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Wave effects are to be considered seriously for the design of coastal structures such 
as breakwaters, harbor, and moored-floaters. The performance analysis of structures in 
shallow water generally requires a number of possible wave conditions in order to 
determine the rational design criteria. Wave conditions can be generated by suitable 
mathematical models or numerical methods which must cope with various wave 
deformations such as shoaling, refraction, diffraction and reflection of waves 
propagating from deep water to shallow water.  

Boussinesq models are well known as the most accurate method for describing the 
propagation of non-linear shallow water waves near coastal regions. The major 
effectiveness of Boussinesq formulations is the incorporation of dynamic properties into 
horizontal dimensions by eliminating the vertical coordinate. It significantly reduces the 
computational burden relative to three-dimensional methods and thus makes wave 
simulations in a wide coastal region practically feasible. In the classical form, 
Boussinesq equation represents a shallow water approximation to the exact Laplace 
problem which incorporates the balance between lowest-order dispersion and lowest-
level non-linearity. Many researchers have tried to derive modified forms of the 
classical Boussinesq equation over last decades and a number of enhanced higher-order 
Boussinesq equations have been derived improving the dispersion and non-linearity as 
well as flow kinematics and dynamics ( e.g. Madsen and Sorensen, 1992; Nwogu, 1993; 
Wei et al., 1995, Agnon et al., 1999; Gobbi et al., 2000; Wu, 2001; Madsen et al., 2002, 
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2003). Among these, the formulation of Madsen et al. (2002, 2003) is most capable of 
treating highly non-linear waves to 25kh =  for dispersion, with accurate velocity 
profiles up to .  12kh =

In this work, numerical simulations are carried out for waters of slowly-varying 
bathymetry based on Madsen’s formulation, which represents basically a fully non-
linear time-stepping method of the exact free surface boundary conditions with the 
kinematic bottom condition. Hereby some numerical schemes are introduced in order to 
describe shoaling, refraction and also irregular waves properly. The connection between 
the vertical velocity, , and the horizontal velocity, , at the free-surface is established by 
expanding the velocity solution which satisfies the Laplace equation in the interior domain. 
The present method applies a truncated, Padé-enhanced Taylor series expansion of the 
velocity about an arbitrary level 

w u

ˆz z=  in the fluid layer. The utility velocities  and 
 are introduced for an approximate solution of the Laplace equation. A 

system of partial difference equations(PDE) is obtained by combining the expanded 
velocity and the bottom boundary condition. After having solved this system by the 
finite difference method, the utility velocities  and  are obtained and then the 
velocities at the free surface are determined. Finally, the velocity and free surface 
elevation is updated by time-stepping the non-linear free-surface boundary condition. 
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Various numerical schemes are used for solving the PDE system by specifying the 
boundary conditions. As for the wave propagation problem, a wave-maker is necessary 
in order to generate the prescribed incident waves. A sponge layer is applied at the open 
boundaries to absorb the out-going waves. Both the wave maker and the wave absorber 
are set up with the concept of relaxation zone which is an extended region of the interior 
domain. A symmetric or reflection boundary condition is additionally applied. The 
reflection boundary is imposed by flipping FDM coefficients at the selected nodes 
versus the local boundary evenly (Neumann boundary) or oddly (Dirichlet boundary). 
Two kinds of matrix inversion method are considered. GMRES (Generalized Minimal 
Residual) may be the most interesting method for solving a large, non-symmetric matrix 
iteratively. Most calculations herein are performed by GMRES method. Recently, Bi-
CG (Bi-Conjugate Gradient) has been proposed for solving non-symmetrical linear 
systems, and its excellent convergence behavior has been confirmed in many numerical 
computations. The required memory for GMRES is about , while it is only 

 for Bi-CG method, where  is the order of linear systems. On account of 
practical applications, Bi-CG method is used when large memory is needed. For the pre-
conditioning, ILU factorization is applied in each sub-time-step in order to save 
memory  
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The linear wave shoaling is fundamentally imbedded in the governing equation for 
wave propagation over varying bathymetry. In order to verify the linear shoaling, the 
following test case is considered. At the seaward boundary, the water depth is . The 
bottom is flat for the first  from the boundary, while it has a constant slope of 1/50 
from 10m to 600m distance. Finally from 600m to 650m, the bottom is flat again with a 
water depth of 1.2m. As a typical example for case of waves coming from deep water to 
shallow water, a wave with period of 8.0s is chosen which corresponds to  
varying from 0.13 to 0.002. The computed maximum elevations agree well with the 
shoaling curve obtained by the exact shoaling equation over the entire path. Based on 
this simulation result, it is concluded that the accuracy of our numerical model is 
acceptable in the aspect of linear wave shoaling. 
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Whalin’s experiment (1971) is extensively cited in the literature to validate numerical 
wave models involving both the non-linear refraction and the shoaling. The bottom 
topography has a shoaling region acting as a concave lens. For waves of , it 
corresponds to  and ka=0. . The simulation runs for 50 seconds to ensure 
the steady state. The relative amplitudes of 1st and 2nd harmonics are obtained along the 
centerline. The harmonic analysis is made from the time series of surface elevation from 
the last 20 seconds. Comparisons between the numerical results and experimental 
results are quite good as shown in the figure below. It is confirmed from the simulation 
that the present model has the capability of describing the non-linear shoaling 
reasonably. 
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Simulation Result for Nonlinear Wave Shoaling (Left-Computed and Measured 
Harmonic Amplitudes; Right-Snapshot of Surface Elevation) 

 
Irregular waves in water of constant depth are simulated to study the generation and 

absorption characteristics of irregular waves in shallow water. It is to note that the wave 
component corresponding to the peak frequency of the simulated wave spectrum is 
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classified to shallow water waves ( 1.0kh ≤ ). The irregular waves are imposed at a 
boundary using JONSWAP spectrum which has the peak period of 12s and significant 
wave height of 3m. The simulation shows that the input and the generated spectrum 
match each other quite well with relative errors less than 1% in the sense of the total 
energy. Based on this result, it may be concluded that there is no significant numerical 
dissipation in the interior domain and the absorption layer works well for waves of all 
frequencies. 

ion 
based on the  and highly 
dispersive waves. Computations are made by finite difference approximation of the 
Bou

The present work can be summarized as follows: A high-order Boussinesq equat
 Padé expansion is modeled to calculate the fully non-linear

 
ssinesq model. Some numerical schemes are implemented to treat the boundary 

condition rationally, to smooth highly-oscillating numeral results properly and to 
inverse the sparse matrix effectively. As a result, it is possible to reduce the 
computational burden and it enables wave simulations in a wide coastal region. Several 
cases with different bottom topography are simulated. The present results show a good 
agreement with the experimental (or exact solution) counterpart for the linear and non-
linear shoaling characteristics. Therefore the numerical method presented in this paper 
may be useful for predicting the propagation of shallow water waves in large domains 
with arbitrary bottom topology.  
 


