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1 Background
Faster speed, yet lower power consumption, has of-
ten been the design objective of high-performance ma-
rine vehicles such as hovercrafts, Surface-Effect Ships
(SES), among others. Lower power consumption also
means less carbon-dioxide emission, an issue of great
environmental concern. The concept of a multi-hull
system offers favorable possibility of powering reduc-
tion in steady motion. Configuration arrangement of
component hulls is therefore an important design issue
to address.

The problems of steady forward-motion of multi-
hulls and SES (hulls with a pressure cushion) were
analyzed in Yeung et al. [1], and Yeung & Wan [2],
respectively. Therein, linearized theory was used to
obtain the interference wave resistance, which can
be either positive or negative, increasing or reducing
the powering for a given speed. Results for a sin-
gle pressure cushion are quite well known (see, e.g.,
Wehausen & Laitone [3], Newman & Poole [4], and
Doctors & Sharma [5]). The possibility of shaping
the pressure function within a cushion was considered
in the interesting work of Tuck et al. [6]. However,
the effects of combining multiple numbers of cush-
ions, perhaps even of dis-similar shapes, have yet to
be thoroughly explored. This paper addresses the mul-
tiple pressure-cushion problem in the same vein as [1]
& [2], with the aim of obtaining the necessary interfer-
ence expressions for rapid evaluation of the behavior
of a pressure collection. Given that there have been
reports [7] on the use of multiple cushions to success-
fully improve the rides and maneuverability of SES
and other cushioned crafts, developing a methodology
to assess the powering performance of multi-cushions
is desirable.

2 Resistance of a Translating Pressure Cushion

Within the framework of linear theory, the generalized
steady wave resistance problem can be summarized
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Figure 1: Coordinate systems: shown for two pressure
cushions with separation and stagger.

as finding a velocity potentialφ(x, y, z) that satisfies
Laplace’s equation, but is subject to the free-surface
boundary condition:

k0φz(x, y, 0)+φxx(x, y, 0)=Px(x, y)/ρU (1)

wherek0 = g/U2 andU is the forward speed in direc-
tion x (Fig. 1) andρ the water density. Here,P (x, y)
is the applied (cushion) pressure, which vanishes ex-
cept in the planform regionsSP . Conditions of de-
caying disturbances asz→−∞ and the absence of up-
stream waves (x→∞) are also to be observed. We
note also that the linearized fluid pressurep and the
longitudinal free-surface slopeζx are given by:

p(x, y, z)− P (x, y) = −ρUφx + ρgz, (2)

gζx(x, y) = Uφxx(x, y, 0)− Px/ρ. (3)

The velocity potentialφP (x, y, z) can be given in
terms of derivative of the Green functionG as:

φP =
U

4πρg

∫∫
SP

P (ξ, η)Gx(x−ξ; y−η; z, 0)dξdη , (4)

after performing an integration by part inξ. The Green
functionG is given in [3]:

G(x−ξ; y−η; z, ζ) = −1
r
+

1
r1

+
4k0

π

∫ π/2

0

dθ sec2 θ∫ ∞

0

− dk
ek(z+ζ)

k − k0 sec2 θ
cos[k(x− ξ) cos θ] cos[k(y − η) sin θ]

+ 4k0

∫ π/2

0

dθ sec2 θek0(z+ζ) sec2 θ sin[k0(x− ξ) sec θ]

× cos[k0(y − η) sin θ sec2 θ]
≡ GL + Gw

(5)



whereGL andGw denote the terms that are symmetric
(the first three) and asymmetric with respect to(x−ξ),
respectively.

The wave resistance induced by a moving cushion
is given by the integral of product of the pressureP
and free-surface slope Eq. (3):−

∫∫
SP

P (x, y)ζxdξdη
and can be simplified to (with the change of variable
λ = sec θ):

RwP = πρU2

∫ ∞

1

dλ

λ4
√

λ2 − 1
|AP (λ)|2, (6)

whereAP (λ), the complex wave-making amplitude
(or the Kochin) function, is given by :

AP (λ)=
k0λ

4

πρU2

∫∫
SP

P (ξ, η)eik0λ(ξ+
√

λ2−1η)dξdη (7)

In arriving at Eq. (6), we note that there was no con-
tribution from GL. Further, from Eqs. (6-7), we ob-
serve thatRwP will be decreased by 75% when pres-
sureP is reduced by 50%. So, smallerP is favored in
terms of reducing wave resistance. However this will
increase the size of the cushion for a fixed displace-
ment.

A pressure cushion profile of peak valuePm that
is infinitely differentiable in the horizontal plane [4] is
shown in Fig. 2. This hyperbolic tangent form with the
tapering parametersα andβ, in the longitudinal and
transverse directions respectively, leads to a closed
form expression for (7) (see [2]).

For a confirmation of our computed results with

Figure 2:Pressure functionP (x, y) of a cushion (α=5, β=
20) in unitized variables:x = 2x/Bp, y = 2y/Lp.

[4], the wave resistance experienced by the pres-
sure cushion is shown in Fig. 3 as a function of the
Froude number (F−2

n ), with the beam-to-length ratio,
BP /LP , of the cushion as a parameter. Here, the non-
dimensionalized resistance coefficient is defined by

CwP =
RwP

2P 2
mBP /ρg

∝ RwP

2∆(h/LP )
, (8)

where ∆ is the displacement (or “lift”) due to the
cushion, andh/LP is the (hydrostatic) head ofPm

to cushion lengthLP ratio. The plot provides the in-
teresting observation: The wave drag to displacement
ratio is proportional to the head-to-length ratio times
a function that depends only onBP /LP andFn. In
Fig. 3,for a fixedh/LP , a wide cushion always yields
higher resistance. The highly oscillatory behavior is
related to the interference of the waves generated by
the bow and stern of the cushion.
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Figure 3:CwP for a rectangular cushion,α=5, β=20.

3 Dual Cushions with Separation and Stagger
In the case of two pressure cushions with separation
and stagger, as defined in Fig. 1, the total wave re-
sistanceRwT on the two pressure cushions is not only
the sum of the resistance due to pressureP1(x, y) (i.e.,
RwP1

) and pressureP2 (RwP2
) individually, but also

of an interference termRwP1�P2
, which cannot be ig-

nored. This term accounts for the effect of pressure 1
on pressure 2 (RwP1→P2

) as well as the effect of pres-
sure 2 on pressure 1 (RwP1←P2

), or effectively, the su-
perposition of the wave-interference effects of each of
the surface distribution in the field. Following [1], we
can establish:

RwT
= RwP1

+ RwP2
+ RwP1�P2

= RwP1
+ RwP2

+ RwP1→P2
+ RwP1←P2

(9)

whereRwP1
andRwP2

are each given by the equivalents of
the Michell formula [8],or Eq. (6-7) here.

3.1 The Interference ResistanceRwP1�P2

Consider the two local frames of reference,O1x1y1z1

andO2x2y2z2 in Fig.1. Using Eqs. (2-4), we can write
the expression of the interference resistancesRwP1→P2

(pressure 2 acting on the wave slope at cushion 2 gen-
erated by cushion 1) andRwP2→P1

(pressure 1 acting
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on the wave slope at cushion 1 generated by cushion
2) as:

RwP1→P2 =
U2

4πρg2

∫∫
SP2

P2(x2, y2)dx2dy2

∫∫
SP1

P1(ξ1, η1)

Gx2x2x2(x2+st−ξ1; y2+sp−η1; z2, 0)dξ1dη1 (10)

RwP2→P1 =
U2

4πρg2

∫∫
SP1

P1(x1, y1)dx1dy1

∫∫
SP2

P2(ξ2, η2)

Gx1x1x1(x1−st−ξ2; y1−sp−η2; z1, 0)dξ2dη2 (11)

Then combining Eqs. (10) and (11), and recalling
thatx2 = x1− st, y2 = y1− sp, andz2 = z1, we can
show that thesummedresistance on the two pressure
cushions can be written as:

RwP1
P2 =
−U2

2πρg2

∫∫
SP1

P1(x1, y1)dx1dy1

∫∫
SP2

P2(ξ2, η2)

Gwx1x1x1(x1−st−ξ2; y1−sp−η2; 0, 0)dξ2dη2 (12)

Of interest is that onlyGw survives in this summation.
Eq. (12) is still unwieldy. However, ifboth cushions
are symmetric about their ownx axis, P (x,−y) =
P (x, y), the result simplifies greatly in a manner sim-
ilar to the hull-to-hull interference problem of [1]. Un-
der this assumption,AP in Eq. (7) can be written as:

AP (λ)=
k0λ

4

πρU2

∫∫
SP

P (ξ, η)eik0λξ cos(k0λ
√

λ2 − 1η)dξdη

(13)
and the interference resistance is given by:

RwP1
P2 = 2πρU2

∫ ∞

1

dλ

λ4
√

λ2 − 1
cos(k0spλ

√
λ2 − 1)

× {<(AP1ĀP2)cos(k0λst) + =(AP1ĀP2)sin(k0λst)}
(14)

Here,< and= denote real and imaginary parts, re-
spectively. Similarly, if the pressure cushions have
symmetry about they axis,P (x, y) = P (−x, y), i.e.
fore-aft symmetry, then Eq. (7) can be written as:

AP (λ)=
k0λ

4

πρU2

∫∫
SP

P (ξ, η)eik0λ
√

λ2−1η cos(k0λξ)dξdη, (15)

and the interference resistance will be:

RwP1
P2 = 2πρU2

∫ ∞

1

dλ

λ4
√

λ2 − 1
cos(k0λst)

× {<(AP1ĀP2)cos(k0λ
√

λ2 − 1sp)

+ =(AP1ĀP2)sin(k0λ
√

λ2 − 1sp)}

(16)

Eqs. (14) and (16) show explicitly how the stag-
gerand separation between the pressure cushions can
influence the total wave resistance. These new expres-
sions can be computed concurrently with the mono-
pressure resistancesRwj ,j =1, 2, given by Eq. (6).

4 Results and Discussion
Restricting the investigation to dual cushions in this
paper, we show some sample results of having first
dual cushions in parallel, and then in tandem, config-
urations. ForBP /LP = 0.5, we compare the perfor-
mance of the dual cushions, each of peak pressurePm,
against a mono-cushion of the same displacement and
geometry. The mono-cushion resistanceR0, there-
fore, has a pressure of2Pm, applied over the same
“footprint”. Figs. 4 and 5 show the interference and
total wave resistance, respectively, relative toR0 for
dual cushions in a parallel configuration. In these fig-
ures, the surface functions approach unity atsp = 0,
when the two cushions overlay. Then both functions
drop off in an oscillatory manner in both directions.
Significant interference drag occurs whensp/Bp is∼
unity andFn is below the first resistance hollow of the
mono-cushion. Note that for largeFn or sp, the dual-
cushion resistance approaches the expected value of
50% of that of the mono-cushion.

To obtain the actual dual-cushionCwT , one should
multiply theRT /R0 ratio byCo, the mono-cushion re-
sistance coefficient defined by Eq. (8), this latter func-
tion is plotted as atraceagainstFn for reference.

The corresponding results of having the dual cush-
ions in tandem withst being varied are shown in
Figs. 6 and 7. The oscillatory patterns are more com-
plex. The lowerFn region shows clearly the interefer-
ence effects of transverse waves. Besides that, a valley
of low total drag occurs for a combination ofFn and
st/Lp. This valley extends to larger values ofst/Lp

(partly visible).
The effects of varying both stagger and separation

are shown in Figs. 8 and 9 forFn = 0.42, which is
at the first hollow, and for a higher Froude number,
Fn=1. Here,λo is the maximum (transverse) wave-
length of the Kelvin wave system. These plots paral-
lel the so-called Weinblum configurations of di-hulls.
The behavior at the two speeds are drastically differ-
ent, butRT /Ro at30% is achievable for a wide range
of sp−st combinations. These and other complex fea-
tures will be further discussed in the Workshop.

REFERENCES

1. Yeung, R.W., Poupard, G. and Toilliez,J.O.,SNAME
Trans., Vol.112, 2004, pp. 142–169.

2. Yeung, R.W., H. Wan,ASME J. Offsh Mech & Arctic
Engrg,2008, in press.

3. Wehausen, J. V. and Laitone, E. V.,Handbuch der
Physik, Vol. 9, Springer-Verlag, Berlin, 1960,

4. Newman,J.N. and Poole, F.A.P.,Shiffstechnik, Bd. 9,
Heft 45, 1962, pp. 21-26.

5. Doctors, L.J. and Sharma, S.D.,J. Ship Res, Vol. 16,
1972, pp. 248-260

6. Tuck, E. O., Scullen, D.,and Lazauskas, L.,Proc.24th

Symp. Naval Hydrodyn. ,Fukuoka, Japan, 2002.
7. Burg, Donald E., “Multiple Cushion Air-Ride Boat

Hull”, WIPO Patent: WO/1992/013753, 1992.
8. Michell, J.H., Philosophical Magazine, Ser. 5,

Vol. 45, 1898, pp. 106-123.

3



     0.4
     0.2
       0

    -0.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

Fn

 3.0

 2.5

 2.0

 1.5

 1.0

 0.5

 0

sp/Bp

0.5

0.25

0.0

-0.25

-0.5

Rinterf/R0

Figure 4:Rinterf/R0 for dual cushions vs.Fn andsp,
for st = 0.
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Figure 5: RT /R0 vs. Fn and sp, for st = 0, with
C0(Fn) shown.
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Figure 6:Rinterf/R0 vs.Fn andst for dual cushions in
tandem(sp = 0).
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Figure 7:RT /R0 vs.Fn andst, for dual cushions in tan-
dem(sp = 0.), with C0(Fn) shown.
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Figure 8: Dual-cushionRT /R0 vs. st/λo and sp/λo, at
Fn = 0.42
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Figure 9: Dual-cushionRT /R0 vs. st/λo and sp/λo, at
Fn = 1.0
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