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1. Introduction 
Fluid/structure impact has important applications in naval architecture, ocean engineering 
and coastal engineering. In general, the problem is time dependent. There are cases, however, 
in which the time variable can be incorporated into the spatial variables. The problem then 
becomes self-similar. There are various solutions for these types of problems. The present 
work will consider a case in which the detailed analysis seems to have been missing so far, 
the oblique impact between an asymmetric water wedge and an asymmetric solid wedge.  
 
2. Mathematical model 
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Fig.1 Sketch of the problem 

We consider the two dimensional problem of the oblique collision of a water wedge with a 
solid wedge, as shown in Fig.1. In the Cartesian coordinate system Oxy , the velocity 
potential φ  satisfies the Laplace equation 

02 =∇ φ                    (1) 

in the fluid domain. On the wedge surface 0S  we have  
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where jViUU −= ，and jninn yx +=  is the normal vector of the body surface pointing out 
of the fluid domain, and i  and j  are unit vectors in the x  and y  directions 
respectively. The dynamic and kinematic boundary conditions on the free surface FS  or 

ς=y  can be written as 
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Assume the origin of the system is on the undisturbed free surface and the impact occurs at 
0=t . The tip of the solid wedge is then at ),( VtUt − . The effect of gravity on the flow is 



ignored in Eq.(3), as we are concerned with only the initial stage of the impact at high speed. 
The solution is expected to be self similar, as there is no length scale. If we introduce 
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we have 
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on the free surface FS , and  
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on body surface 0S , where VU /=ε .  
The tip of the solid wedge is now at )1,( −ε  in the new system. For the convenience in the 
computation, we can further define εαα +=  and ββ = , which in fact means a 
coordinate system moving with the solid wedge with the horizontal speed. The tip of the 
solid wedge is then at )1,0( − . Eqs(7) and (8) can be rewritten as  

0
2
1

=∇∇+−−− ϕϕεϕϕβϕαϕ αβα              (10) 

ααβαα βϕϕεββαβ −=−−                     (11) 

To impose the boundary conditions more effectively in the numerical simulations, we rotate 
the system βα −− o  clockwise by 22/ γπ −  to form a new system ηξ −− o , when 0>α . 
Eqs.(10) and (11) on the right hand side of the wedge then become 
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( ) ηξξξξ ϕηϕγηγεξηη +−=+−−− 22 sincos            (13) 

To improve the efficiency in iteration, we can rewrite these two equations in an integral form, 
following the procedure of Wu, Sun & He(2004). Thus we can write Eq(13) as  
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If the right hand side of this is treated as known, the differential equation can be solved as 
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where the ),( 00 ηξ  is the intersection point between the free surface and a control surface 
CS  far away from the solid surface. Similarly, Eq.(12) can be written as  
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in which 0),( 00 =ηξϕ  has been assumed. When 0<α , or on the left hand side of the solid 
wedge, a similar procedure can be followed. Once the solution is found, the pressure in the 
fluid can be obtained from 
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where ρ is the density of the fluid.  
To solve the boundary value problem, an integral equation along the boundary of the fluid is 
established based on Cauchy theorem for the complex velocity potential. The boundary is 
then divided into small elements along which linear variation of the potential is assumed. An 
iterative method is used to satisfy the nonlinear boundary conditions on the free surface 
which is unknown itself and is obtained through the solution. 
 
3. Numerical results and discussion 
In previous publications, following impact problems have been considered: (1) a symmetric 
solid wedge entering a flat water surface vertically (Dobrovol’skaya 1969, Zhao & Faltinsen 
1993), (2) an asymmetric wedge entering a flat water surface vertically (Semonov & Iafrati 
2006), (3) a symmetric (Wu 2007a) and an asymmetric (Cumberbatch 1960, Zhang, Yue & 
Tanazawa 1996), water wedge hitting on a flat wall, (4) a symmetric liquid wedge hitting a 
symmetric solid wedge (Wu 2007b). Here we shall undertake simulations and give results for 
the oblique impact of water wedges and solid wedges, which can be either symmetric or 
asymmetric. Based on the definitions given in Fig.1, Fig.2 gives results for a solid wedge 
entering calm water with 0

21 45== γγ  and with 0
1 40=γ , 0

2 20=γ respectively. Fig.3 
gives results for impact between a liquid wedge and a solid wedge with 0

21 30== γγ , 
0

43 30== γγ , and with 0
1 40=γ , 0

2 20=γ , 0
3 40=γ , 0

4 50=γ  respectively. Detailed analysis 
and discussions will be given in the workshop.   
 
4. Conclusions 
The present work is for a more general case of solid wedge/water wedge impact problem. It 
is solved based on the self-similar flow. When the boundary surface has curvature, a curved 
liquid column (Wu 2007a) or a closed liquid droplet (Wu 2007b) for example, the time 
stepping method would have to be used. It is still however possible to use the present result 
as an initial solution in many cases, as adopted by Wu(2006) for the twin wedges problem.  
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Fig.2 Oblique entry of a symmetrical/asymmetrical wedge 
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Fig.3 Oblique collision of water wedge and solid wedge 
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