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1. Introduction 
A time domain method is employed to analyze 
interactions between waves and floating bodies. 
The nonlinear free surface conditions and body 
boundary conditions are satisfied based on the 
perturbation method up to 3rd order. The 
objective is to theoretically study springing of 
ships. Springing is a weakly nonlinear problem. 
The relevant wave lengths are short relative to 
the ship length. Thus, for the ship springing 
problem, from computational efficiency point of 
view, a perturbation method has its advantage 
compared with a fully nonlinear method.  
 
2. Description of the method 
The 1st, 2nd and 3rd order free surface conditions 
follow by introducing the perturbation 
expansions of velocity potential 
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The small parameter ε here is a measure of the 
wave slope. A 2D numerical wave tank is 
considered. At each time step, boundary element 
method (BEM) is adopted to solve the boundary 
value problem (BVP) for the velocity potential φ  

and its time derivative tφ . Panels are distributed along 
the body surface bS , free surface S , left vertical wall 

, right vertical wall S  and the bottom S . (See 
fig.1). The variation of 

f

w1S w2 0

φ  (or tφ ) and nφ (or tnφ ) over 
each element are assumed linearly varying. The 
continuity condition of φ (or tφ ) at the intersection 
points of different boundaries is enforced. Fourth 
order Runge-Kutta method is applied to update φ and 
η on the free surface for the next time step.  
The formulation of body boundary condition for φ  
follows that of Ogilvie (1983), while the body 
boundary condition for tφ is based on Wu (1998).  
Similar to Clement (1996), a coupling of a numerical 
beach and a piston-like absorbing boundary condition 
(PABC) is applied to absorb outgoing waves. The 
numerical beach used here is the same as that of 
Greco (2001). In order to obtain PABC at each time 
step, we solve the problem like solving the response 
of a floating body in waves.  
 
3. Verification of the method 
The accuracy of the numerical method is an important 
issue. With the purpose of verification, the free 
oscillations in a tank, the forced oscillations 
(wavemaker problem) in a tank, and the nonlinear 
diffraction and forced oscillations of a horizontal 
cylinder are studied. The results are presented up to 
2nd order and comparisons between the analytical 
results and the experimental results are made. 
    Cointe et al. (1988) studied two cases of nonlinear 
transient wave in a rectangular tank. One case is the 
free oscillation problem, in which an initial 
displacement is given to the free surface. In the 
simulation, we set L=1.0m, h=0.2m and 

0 =0.02cos( )z xπ  m, where L is the length of the tank, 
h is the water depth and z is the initial displacement 
of free surface. Fig.2a and Fig.2b show the numerical 
results of 1

0

st order and 2nd order wave elevation at 
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x=L/8, together with the corresponding analytical 
results at that point. The agreement between the 
numerical results and the analytical solution is 
very encouraging. 
    The forced oscillation (wave maker problem) 
is also investigated by Cointe et al. (1988). The 
motion is prescribed on , while  is fixed. 
As a useful test to check the accuracy of 
numerical results, Cointe et al. (1988) suggest the 
following equation to control the mass 
conservation at second-order: 
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Here, L is the length of the tank; (1)η (0, t) is the 
1st order wave elevation on  w1S ; (2)η (x,t) is the 
2nd order wave elevation; =F(t) ⋅1( )l t 1 sin( )wA tω  
is the displacement of . F(t) is the ramp 
function applied over the first 2 wave periods. 

is the amplitude of  the displacement of  

w1S

1wA w1S .
Mass conservation is checked at the end of the 
third period. The results for first-order and 
second-order mass check are presented in Fig.3, 
showing the convergence with the increasing 
number of elements on the free surface.  
    Another good way of generating waves in a 
numerical tank is to feed a theoretical particle 
velocity profile along the vertical input boundary. 
This method has been adopted by Koo and Kim 
(2004) in their fully nonlinear wave tanks, and by 
Skourup (1996) in 2nd order wave tank. However, 
we must be careful with the mass transport due to 
the boundary condition that is used. One would 
expect the increase of mass all the time without a 
damping zone mechanism that can take mass out 
of the system. The rate of mass transport is given 
by Dean and Dalrymple (1991) as 2 /(2 )ga kρ σ , 
where ρ is the density of water, σ  is the wave 
frequency, is gravity acceleration and k is the 
wave number. As shown in Fig.4, the rate of 
mass transport observed in the 2

g

nd order 
simulation agrees well with that given by Dean 
and Dalrymple (1991). Note that the mass 
transport shown in the figure is non-dimensional, 
and the offset of the two curves is due to the 
ramp function which is used to give a smooth 
start of the flow. 

Isaacson and Ng (1993) studied the forced 
oscillation of a horizontal cylinder in deep water. 
Their method was based on a constant element 

method with implicit 2nd order Adam-Moulton for the 
time integration of free surface conditions. tφ  was 
derived by a finite difference method.  
In the literature, there are two ways to get the 2nd 
order force acting on the body, i.e. the direct 
integration method (Pinkster  and Oortmerssen, 1977) 
and indirect method based on Green’s 2nd identity 
(Faltinsen, 1976). In the former method, one has to 
solve the 2nd order problem and integrate the pressure 
on the body surface. In the latter method, instead of 
solving the 2nd order problem, we can obtain the 2nd 
order force by using the boundary conditions and 
solutions of the linear problems. In this paper, we 
introduce two artificial velocity potentials and use the 
indirect method as a tool to check the 2nd order 
numerical results.   
The artificial velocity potentials iψ (i=1, 2) introduced 
are similar to Wu and Taylor (2003).  iψ  satisfies the 

Laplace equation, i 0ψ =  on z=0, i =
n in
ψ∂
∂

 on the mean 

position of body surface,  as zi 0ψ → → −∞ and the 
radiation condition. Green’s 2nd identity leads to 
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where (2)
tϕ  is the time derivative of the second order 

velocity potential (2)ϕ , n is the unit normal to the 
surface, defined as positive pointing out of the fluid 
domain. 
Using the condition for (2)

tϕ  at infinity and the free 
surface condition for iψ , we obtain 
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The analytical solution for iψ  for a half circular 
cylinder has been derived, by taking an image of the 
body and solving the integral equation directly. The 
expression for i

z
ψ∂
∂

 on the free surface is found to be 
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Here γ = x

R
, R is the radius of the cylinder, x is 

defined as in Fig.5. 

We note that 1

z

ψ∂

∂
 has a logarithmic singularity at 

the intersection point of the free surface and the 
body. Consequently, 1ψ  is also singular at the 
intersection point. However, the singularity itself 
doesn’t matter because the integration of the 
singularity over an infinitesimal area is finite. 
Fig.6a shows the amplitude of 2nd order 
oscillatory forces due to 2nd order velocity 
potential (2)φ . The agreement between the results 
of direct integration method and that of the 
indirect method is excellent, indicating the 
accuracy of the 2nd order solution. In Fig.6b and 
Fig.6c, we also present the amplitude of the total 
oscillatory forces compared with the theoretical 
and experimental results of Yamashita (1977)  
and Kyozuka (1982).  
    The fixed horizontal cylinder in deep water 
waves was studied by Isaacson and Cheung 
(1991). The wave field is separated to the known 
incident wave Iφ  and the unknown scattered 
wave Dφ . The second order solution is again 
checked by Green’s 2nd identity. (See Fig.7a).The 
agreement between the direct method and method 
based on Green’s 2nd identity is fairly good. The 
total 2nd order horizontal force compared with 
theoretical and experimental results by Kyozuka 
(1982) is shown in Fig.7b, while the horizontal 
mean drift force is checked by Maruo’s formula, 
as shown in Fig.7c.  
 
4. Future work 
Verification work is being carried out for 3rd 
order results in two-dimensional problems. This 
will be done first by considering a 3rd order 
problem where an analytical solution is possible 
by imposing an artificial body boundary 
condition. Details will be presented at the 
conference. In order to investigate ship springing, 
the method will be generalized to three 
dimensions with the effect of forward speed. 
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      Fig.1 Sketch of the numerical wave tank                 Fig.2a 1st order component of wave                   Fig.2b 2nd order component of wave  
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          Fig.3 The relative error of the mass                Fig.4 The mass transport into the tank                  Fig.5 Definition of the coordinate for 
                     conservation.                                                                                                                                  the problem of iψ  
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