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INTRODUCTION 
For the safe and economic design of offshore 
structures in the severe sea environments, accurate 
models are required for the height, shape and internal 
flow kinematics of extreme waves. As the largest 
waves in a random sea state are also irregular and 
highly nonlinear, it is still a challenging job to 
accurately describe such a complex problem. Indeed, 
the study on field data (Rozario, etal, 1993) has 
shown that the most likely mechanism for the 
development of extreme waves in a broad-banded sea 
state results from the focusing of wave energy due to 
the dispersive nature of the underlying free waves. 
Therefore, extreme waves do not arise as part of a 
regular wave train, but occur as individual events at 
one point in space and time. In this paper we 
investigate the effect of wave nonlinearity on 
focusing of localized group of extreme waves using a 
fully nonlinear numerical scheme based on a higher-
order boundary element method (HOBEM). 

As an extension of the previous work (Ning and 
Teng, 2007), the fully nonlinear numerical wave tank 
is modified to describe the generation and processes 
of focused wave groups in finite and infinite water 
depth and capture the instantaneous point at which 
the extreme wave occurs.  
 
NUMERICAL MODEL 
A Cartesian coordinate system is defined with the 
origin in the plane of the undisturbed free surface, 
with the z-axis positive upwards. An ideal, 
irrotational and incompressible fluid is assumed so 
that a velocity potential φ (x, y, z, t) exists. The 
velocity potential φ(x, y, z, t) satisfies the Laplace 
equation inside the fluid domain Ω. On the 
instantaneous free surface, both the fully nonlinear 
kinematic and dynamic boundary conditions are 
satisfied. On the solid boundaries (lateral walls and 
bottom of the tank), the impermeable condition is 
imposed. At the inflow boundary SI, the second-order 
Stokes irregular wave velocity profile along the 

vertical input boundary are prescribed for the focused 
wave group, in which the initial phases are chosen to 
make the velocity largest  at the point in the time t=t0 
and position x=x0. Meanwhile, the initial calm water 
surface condition is applied in the present research. 

The direct boundary integral equation is derived 
to solve the prescribed boundary value problem by 
using the second Green’s theorem. Applying the 
Green function satisfying the impermeable condition 
on the sea bed and the two lateral walls, the 
Fredholm integral equation of the second kind can be 
derived as follows: 
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which only includes the incident boundary and the 
free surface boundary, where p=(x0, y0, z0) and q= (x, 
y, z) are source and field points, and ( )pα  is the 
solid angle. The Green function can be obtained by 
the superposition of the image of the Rankine source 
about the sea bed and the infinite image about the 
two lateral walls. To ensure the convergence of the 
Green function, a factor 1/ n B  is subtracted from 
each term (Newman, 1992). The Green function can 
be written as:  
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where B is the tank width, and h is the water depth.  
As the lateral walls and the bottom have been 
eliminated, the present numerical wave tank is easily 
extended to infinite water depth. 
Then the boundary surface is discretized with a 
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number of elements. The geometry of each element is 
represented by the shape functions, thus the entire 
curved boundary can be approximated by a number 
of higher-order elements. Within the boundary 
elements, physical variables are also interpolated by 
the shape functions. The integral equation Eq. 1 can 
be formulated in the following form  
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in which ( , )J ξ η  represents the Jacobian matrix 
relating the global coordinate and the local intrinsic 
coordinates in the i-th element. Ne1 and Ne2 are the 
numbers of the discretized elements on the free 
surface and the incident surface, respectively. In the 
integration process, the solid angle, the single layer 
and double layer integration are directly resolved 
(Teng, et al, 2006). 

Since the discretized integral equation is always 
variant in time, all the boundary surfaces are 
regridded and updated at each time step using the 
semi-mixed Eulerian-Lagrangian scheme and 4th-
order Runga-Kutta approach. The influence 
coefficients are also computed using the updated 
grids and known values. If the normal velocity on a 
boundary surface is known, the fluid velocity on the 
surface can be computed using the following 
equation 
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where nx, ny, nz are components of the unit normal 
vector in the x, y and z directions. The particle 
velocity on the free surface can be obtained 
correspondingly. 

Once the Eq. (3) is solved and all the velocity 
potentials and their normal derivative in the 
calculation domain are known, it is easy to obtain the 

horizontal velocity distribution for any water particle 
inside the fluid domain from the following equation 
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LABORATORY EXPERIMENT 
The present numerical model has been used to 
reproduce a physical model test performed in a wave 
tank (3m x 69m) at the State Key Laboratory of 
Coastal and Offshore Engineering, Dalian University 
of Technology (DUT), China. Experimental data 
collected from five wave gauges and an acoustic 
Doppler velocimeter are considered in this paper. 
The crest/trough focused waves always occur at the 
gauge 3 by modulating the initial wave phases in the 
experiments. Fig.1 indicates the experimental 
arrangement, and Table 1 lists the locations of the 
wave gauges of interest, relative to the focused 
position, i.e., gauge 3. The details of the chosen 
focused wave group analyzed in this paper are given 
in Table 2. JONSWAP spectrum is used in the 
experiments. The experimental linearized wave time 
series can be obtained from the formula (C−T)/2, 
where C means the free surface time history with 
crest focusing, and T means the free surface with 
trough focusing.  The corresponding spectrum can be 
obtained using the fast Fourier transform, leading to 
the result shown in Fig. 2. 
 

 

 

 

 

 

                 Fig.1 Experimental arrangement 

Tab.1 Distances of wave gauges from the No. 3 (m) 

d1 d2 d4 d5 

0.99 0.383 0.68 0.88 

 
Tab.2 Input wave group characteristics 
Frequency range f (Hz) 0.6≤ f ≤1.5 

Peak frequency fp 0.80 

Incoming wave crest value  AI(m) 0.0875 

Wave number N 30 

Wave slope εi 0.283 
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Fig.2 Wave spectrum for linearized incoming wave 

 
NUMERICAL and EXPERIMENTAL RESULTS 
In the numerical simulations, wave component with 
peak frequency fp is taken as the characteristic wave. 
The corresponding computational domain is taken as 
5λp×0.1λp, meshed with 100×2 cells, in which the last 
1.5λp is the damping layer. For computing efficiency, 
the input focus position used for the numerical 
simulation is chosen at x0=1.5λp, and the focus time 
t0=6Tp (7.5s). Because of wave nonlinearity, the real 
focal point (x1 and t1) is different from the input 
values and can be found in the numerical simulation 
based on the NEWWAVE theory. 
The comparisons between the numerical simulations 
and measured data for the crest and trough focused 
free surface time series at focal point, and the time 
histories of horizontal velocity at point P are given in 
Figs.3-6 respectively. For all the results here, the 
numerical results agree well with the experimental 
measured data. Numerical results for both crest and 
trough focused horizontal velocity time histories 
(with trough focused velocity multiplied by -1) at the 
focal point on the free surface are given together in 
Fig.7. The strong nonlinear characteristics are 
apparently shown in the figure. By using formulas 
(C-T)/2 and (C+T)/2 for the crest and trough focused 
velocity time histories, the odd and even harmonics 
of the horizontal water particle velocity components 
are obtained as shown in Fig.8. The corresponding 
spectra of above velocity components can be further 
obtained using the FFT, as shown in Fig.9. From the 
figure, the contributions from linear wave, 2nd-order 
and 3rd-order waves can be seen clearly. Fig.10 
concerns the horizontal velocity profile beneath the 
largest wave crest and the lowest wave trough at the 
focal point and focal time. Similar phenomena with 
Bateman et al (2003) are observed. 
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      Fig.3  Free surface time series at crest focal point 
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Fig.4 Free surface time series at trough focal point 
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             Fig.5 Velocity time histories at crest focal point P  
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Fig.6 Velocity time histories at trough focal point P  
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Fig.7 Numerical results for velocity time histories at 
crest and trough focal point on the free surface 
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   Fig.8 Time histories of crest focal point velocity in 
odd and even terms on the free surface 
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     Fig.9 Spectra of crest focused velocities in odd term and 

even terms 
 

Keeping all unchanged, except extending the water 
depth to infinite, similar simulations have been 
carried out. The details of the numerical results and 
the comparisons with those obtained in finite water 
depth will be shown in the coming workshop. 
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       Fig.10 Distribution of largest absolute crest and trough 

velocities along the water depth 
 
CONCLUSIONS 
This paper presents a powerful numerical wave tank 
for the simulation of focused wave groups both in 
finite and infinite water depth based on a HOBEM 
using channel Green function. The results are shown 
to be accurate and the model is robust. Further 
examples of wave-structure interaction are ongoing. 
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