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Wave basins are usually equipped with banks of wavemakers on one or two sides, and
beaches on the opposite sides. Most wavemakers are oscillatory in rotational (‘hinged-flap’)
or translational (‘piston’) modes. As an alternative to conventional beaches, wavemakers with
active controls can be used as absorbers [1,2,3]. Absorbers have the advantages that they
do not extend into the experimental domain of the basin and, at least in linear theory, low
or zero reflection can be achieved. In order to generate and absorb plane waves at oblique
angles, or more general three-dimensional wave systems, it is necessary to use a large number
of wavemakers with small widths compared to the wavelength [4].

Wavemakers and absorbers are usually analyzed with Havelock’s theory [5], which applies
to a semi-infinite fluid domain. A radiation condition is imposed, and each wavemaker radiates
waves which propagate to infinity. As in the case of a floating body in an infinite fluid,
the hydrodynamic pressure force includes both added-mass and damping components. This
approach is intuitively logical if the horizontal scale of the basin is large compared to the
wavelength, and if reflections are ignored.

It is more rational to consider the basin as a finite domain, but this changes the linear inviscid
theory in a fundamental manner. The waves are reflected on the basin walls, and there is no
energy radiation. Considering each wavemaker mode separately, and assuming steady-state
harmonic time dependence, standing waves are generated and the fluid velocity throughout
the basin is in phase with the wavemaker. There is no wave damping, only an added-mass
component of the pressure force.

Progressive waves can be generated in a finite basin by combining different wavemaker modes
with appropriate phase differences. In the simplest case of two dimensions, with identical
wavemakers at the ends x = 0 and x = L, if the wavemaker at x = 0 oscillates with amplitude
Re ξ1e

iωt, outgoing waves of the form ζ = Re ξ1Cei(ωt−kx) are generated before accounting for
reflections. Here C is a complex constant. The reflection of this wave system can be cancelled
by the second wavemaker, at x = L, if its amplitude is ξ2 = −ξ1e

−ikL. The combined result of
these two wavemaker motions is a progressive wave moving in the +x-direction, except for the
evanescent field close to each wavemaker. If −ω2Aij denotes the added-mass force acting on
wavemaker i due to the motion of wavemaker j with unit amplitude, the forces acting on the
two wavemakers are −ω2ξ1(A11 − e−ikLA12) and −ω2ξ2(A22 − eikLA21). Since A11 = A22 and
A12 = A21, the ‘effective’ added mass of each wavemaker is (A11−A12 cos kL) and the ‘effective’
damping coefficients are ∓A12 sinkL. (For kL >> 1 it follows from the usual eigenfunction
expansion that A12 sinkL < 0. Thus the damping is positive for the first wavemaker and
negative for the second wavemaker, as expected.)

This provides a connection between the added-mass matrix for two wavemakers in a finite
basin and the effective added mass plus damping for a single wavemaker. (We exclude eigen-
frequencies of the basin, where sinkL = 0.) The individual added-mass coefficients Aij are
oscillatory functions of kL, which tend to ±∞ at the eigenfrequencies. However the ‘effective’
added mass and damping defined above are bounded, and tend to the non-oscillatory limits
derived from Havelock’s theory if kL >> 1.



The three-dimensional case can be analyzed numerically, using either separation of variables
and eigenfunction expansions for simple geometries or a more general radiation-diffraction code.
The results shown here have been computed using WAMIT. Two specific cases are considered,
a square basin 16 m by 16 m by 1 m depth, and a round basin of radius 10 m and depth
1 m. Hinged-flap wavemakers are distributed uniformly around the periphery, with the hinges
at the bottom. The generating wavemakers for the square basin are on two adjacent sides,
as shown by the black rectangles in Figures 1-4, and the absorbing wavemakers (red) are on
the two opposite sides. For the round basin the generating and absorbing wavemakers occupy
opposite semi-circular segments, as shown in Figure 5. Except where otherwise noted, the
normal velocity of each wavemaker (both generating and absorbing) is equal to the normal
component of the orbital velocity of a progressive wave at the center of the wavemaker; this is
referred to below as ‘kinematic’ absorption.

The results shown in Figures 1-5 are for a period of 2 seconds, corresponding to a wavelength
of 5.2 m. Contour plots are shown of the wave amplitude over the free surface, excluding a
1 m strip adjacent to the wavemakers. For pure progressive waves the amplitude is constant.
Reflections and other imperfections in the generated wave system are indicated by fluctuations
of the amplitude. The magnitude of the fluctuations is measured in each plot by the standard
deviation σ, defined as the square-root of the variance normalized by the mean value.

Figure 1 shows the waves in the square tank without absorption, at incidence angles β = 0
and 30 degrees relative to the +x-axis. In the case β = 0 a two-dimensional standing wave
is present. For β = 30◦ the standing-wave system is three-dimensional. Figure 2 shows the
corresponding results with kinematic absorption. The left figure (β = 0) indicates almost
perfect absorption with σ = 0.002. For nonzero incidence angles the standard deviation is
larger, due to the finite width of the wavemakers. For these results a total of 128 wavemakers
are used, with a width of 0.5 m.

Figure 3 shows the effect of using 64 wavemakers (left) of width 1 m or 256 0.25 m wavemakers
(right). As expected, the amplitude fluctuations for oblique waves can be reduced by decreasing
the width of each wavemaker, and conversely. These results suggest that the standard deviation
is more-or-less proportional to the square of the wavemaker width.

In order to improve the utility of absorbing wavemakers it is necessary to avoid an a priori
specification of the amplitude and phase, so that other waves can be absorbed including those
radiated and diffracted from bodies in the basin. In experimental applications it is customary
to measure either the incoming waves before they reach the wavemaker, as in [1], or the
hydrodynamic force acting on the wavemaker, as discussed in [2] and [3], and use this to
optimize the absorber controls. Using the measured force on the wavemaker is advantageous,
especially in two dimensions or with normally incident waves. Results to illustrate this situation
are shown in Figure 4. Each absorber’s motion is determined by a coupled equation of motion
with external damping equal to the effective wave damping coefficient, and an external inertial
restraint equal to the negative of the effective added mass. This ‘dynamic’ control system gives
perfect absorption if the waves are normally incident upon the absorber, but in other cases it
is less effective. The latter problem is most evident in the case β = 0, shown on the left in
Figure 4, where the waves propagate in the direction parallel to the lower right wall; ideally
the absorbers along this wall should be stationary, but instead they react to the pressure of the
passing wave system to extract energy.

Figure 5 shows the wave amplitude in the round basin. In the upper figure the absorbers are
stationary and three-dimensional standing waves are generated. In the lower figures the waves
propagate in the +y-direction and the absorbers are kinematic (left) or dynamic (right).



Figure 1: Amplitude of standing waves generated in the square basin with stationary wave absorbers, at angles
β = 0 (left) and β = 30◦ (right). 128 wavemakers with width 0.5 m are used, including both generators (black)
and absorbers (red). Note that different ranges of colors are used to represent the amplitude in each plot.

Figure 2: Amplitude of progressive waves with kinematic absorbers at β = 0 (left) and β = 30◦ (right).

Figure 3: Amplitude of progressive waves with kinematic absorbers at the incidence angle β = 30◦, showing
the effect of the number of wavemakers. (These should be compared with the right plot in Figure 2, where 128
wavemakers are used.)



Figure 4: Amplitude of progressive waves with dynamic absorption at β = 0 (left) and β = 30◦ (right).

Figure 5: Wave amplitude in the round basin, with generators (black) in the sector (y < 0) and absorbers (red)
in (y > 0). The upper plot shows the standing wave system without absorption. The lower plots show the
amplitude of waves propagating in the +y-direction with kinematic (left) and dynamic (right) absorbers.
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