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1 Introduction

Near-trapped modes appear in the frequency do-
main solution as large spikes in the response, and
it is this context that they were considered by
Evans & Porter (1997). However, in the time-
domain the existence of a near trapped mode is
associated with a slowly decaying mode which
has a characteristic oscillation time and fall time.
The solution in the time-domain was investigated
by Eatock Taylor et al. (2006); Eatock Taylor &
Meylan (2007) and the present work is a con-
tinuation of these. A near trapped mode is as-
sociated with a scattering frequency (also called
resonance) close to the real axis. A scatter-
ing frequency is a pole of the analytic contin-
uation of the scattering operator (or the resol-
vent). What this means is that the pole oc-
curs for non-physical frequencies for which the
scattered solution grows towards infinity (away
from the scattering body). In practice, the scat-
tering frequencies can usually be calculated by
considering the formula for real values of fre-
quencies but allowing the frequency to be com-
plex and finding values for which the operator
is not invertible (the approximation matrix is
not invertible). In the context of water waves
they have been investigated by Hazard & Lenoir
(1993) and Hazard & Lenoir (2002) for the case of
arbitrary two-dimensional bodies (although cal-
culations were presented only for special cases)
and Meylan (2002). Associated with the scatter-
ing frequencies is a mode, which is similar to an
eigenfunction but grows to infinity. The method
we use to find the modes associated with the scat-
tering frequencies goes back to Steinberg (1968)
and is used by Hazard & Loret (2008). The solu-
tion method in the time domain for arbitrary ini-
tial displacements (as opposed to a long crested
incident wave packet) is based on the generalised

eigenfunction method. This method goes back to
the work of Povzner (1953); Ikebe (1960); Wilcox
(1975) and have been used recently by Hazard &
Lenoir (2002); Meylan (2002); Hazard & Loret
(2007); Hazard & Meylan (2008).

2 Equations for Nc bottom

mounted cylinders

We consider the case of Nc bottom mounted
cylinders, radius al.centred at (xl, yl). in water
of constant finite depth H. at z = −H. This
gives us the following equation
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where (Rjl, ϕjl) are the polar coordinates of the
mean centre position of cylinder l in the local
coordinates of cylinder j. For the case of plane
incident wave

Dl
ν = eik(xl cos χ+yl sin χ)eiν(π/2−χ). (2)

These equations follow from (Evans & Porter,
1997). For the case when the incident wave is
cylindrical

Dl
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∞
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Jν−n(kRl)e
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3 Scattering Frequencies

We begin with the truncated version of equation
(1) truncated to a finite number of modes which
can be written as a matrix equation for the un-
known vector a of coefficients Al

ν :

M (k) a + a = f (k) . (4)



We find that the matrix I + M (k) possesses ze-
ros eigenvalues in the lower complex plane. These
zeros are called scattering frequencies.

3.1 Calculation of the Residues

Suppose we have a scattering frequency at a com-
plex wavenumber kp. Near the point kp it can be
shown that (Steinberg (1968))
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where ukn
is the eigenvector with eigenvalue zero,

u∗
k∗

p
, is the eigenvector of the adjoint operator

with eigenvalue zero and M(1) is the derivative
of M at kp. We can find the shape associated
with each of the scattering frequencies which is
given by the formula
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where uj
m are the values corresponding to the

eigenvector uk0
.

4 Time domain calculations

The solution in the frequency domain can be used
to construct the solution in the time domain.
This is well known for the case of a plane in-
cident wave which is initially far from the body
and can be calculated straight forwardly using
the standard Fourier transform. However, when
we consider an initial displacement which is non-
zero around the cylinders the problem is of much
greater complexity. The solution then requires
the use of generalised eigenfunctions and the use
of a special inner product. We introduce the op-
erator G which maps the surface potential to the
potential throughout the fluid domain. We find
Gψ by solving

∆Ψ (x,z) = 0, x ∈ Ω,

∂nΨ = 0, x ∈ ∂Ω,

∂nΨ = 0, z = −H,
Ψ = ψ, z = 0,

and define Gψ = Ψ. We introduce the operator
∂nG which maps the surface potential to the nor-
mal derivative of potential at the surface (called
the Dirichlet to Neumann map) which is given by

∂nGψ = ∂nΨ|z=0 .

We can therefore write the time-dependent equa-
tions as the following
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We note that the evolution operator
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is self-adjoint in the Hilbert space given by the
following inner product
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Note that this inner product is an expression for
the energy.

4.1 Eigenfunctions of A

The eigenfunctions are nothing more than fre-
quency domain solutions and the frequency ω is
exactly the eigenvalue. To actually calculate the
eigenfunctions of A we need to specify the in-
cident wave potential. The most natural form
of the incident waves to consider is given by
Jn (kr) einθ. We write the eigenfunctions of A
(with eigenvalue ω) in the vector form

~φn(x, k (ω)) =
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)

, n ∈ N.

φn(x, k) are the solutions for an incident wave of
the form Jn (kr) einθ and for ω positive are given
by
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where Aj
m are found by solving equation (1) with
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eigenfunctions are orthogonal and the normalisa-
tion is given by
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This normalisation is achieved by using the result
that the eigenfunctions satisfy the same normal-
ising condition with and without the scattering
terms. This result, the proof of which is quite
technical, has been shown for many different sit-
uations. The original proof was for Schrodinger’s
equation and was due to Povzner (1953); Ikebe
(1960). A proof for the case of Helmholtz equa-
tion (our problem if the depth is shallow) was
given by Wilcox (1975). Recently the proof was
given for water waves by Hazard & Lenoir (2002);
Hazard & Loret (2007).

The solution in the time domain on the free
surface (it can be calculated throughout the fluid
straightforwardly by including the depth depen-
dence) is expanded in the waves ~φn(x, k). This
gives us
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This gives us the following expression for fn (ω)
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If Φ (x, 0) = 0 this expression for the displace-
ment simplifies to
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4.2 Approximation of the time domain

solution

To keep the presentation simple, we consider the
case where the initial potential is zero so that
displacement is given by equation (6). We ap-
proximate
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where we have derived the last expression by clos-
ing the contour in the upper half plane and we
have ignored the contribution from the branch
cut.

4.3 Results for an arbitrary initial condi-

tion

For the purpose of calculations in this paper we
use a grid of four cylinders as shown in Fig 1
There is one scattering frequency close to the real
axis for the four cylinders at 2.7641 − 0.0122i.
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Fig. 1: The arrangement of cylinders and the points
at which we will calculate the displacement.

We present results for an initial distribution
of the form

ξ = e−2((x−0.5)2+(y−0.5)2) + e−2((x+0.5)2+(y+0.5)2)

(7)
The displacement is shown in Fig. 2 with the ap-
proximate solution shown as a dotted line. The
true solution tends to the approximate solution
after an initial period of time. The results in this
figure are based on a shallow water approxima-
tion in which there is no dispersion so ω = k. The
effect of water depth is not marked for bottom
mounted cylinders and is shown in Fig 3 (note
that the time scales as

√
H for shallow water with

our non-dimensionalisation).
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Fig. 2: The true (solid line) and approximate
(dashed line) solution for the points a to e for an

incident displacement given by equation (7).
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Fig. 3: The true (solid line) and approximate
(dashed line) solution for the point b for an incident

displacement given by equation (7) The water
depth is given by 0.1 (a), 0.2 (b), 0.5 (c), and 1 (d).

5 Summary

We have considered arrays of vertical bottom
mounted cylinders. This problem has been well
studied and it is relatively simple to determine
the single frequency solutions. We have shown
that the solution in the time-domain can be
calculated from the single frequency solutions,
which requires a special formula that we have
derived. It has previously been established that
there is near trapping associated with a singular-
ity in the analytic extension of the solution to the
lower complex plane. We have shown here that
there is also a mode associated with this zero
which is very similar to an eigenfunction and we
have shown how the contribution can be deter-
mined. We have also shown that, by deforming

the contour of integration given by our expres-
sion for the time-dependent solution in terms of
the single frequency solutions we can determine
an approximate solution in terms of near trapped
modes. The method outlined here would gener-
alise easily to other situations, such as floating
bodies. There is no requirement of near near
trapped modes for the generalised eigenfunction
expansion method. However, if the particular ge-
ometry does have near trapped modes, then the
method outlined to find the approximation would
work in a similar manner.
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