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1) Introduction

We propose an algorithm to solve the generalized Wagner problem for two dimensional symmetric and
elastic bodies. Following Zhao et al. (1996), the word generalized means that the boundary condition on
the wetted surface is prescribed on its exact position. On the other hand, the boundary condition on the
free surface is linearized on lines emanating from the contact points. This problem does not pose difficulties
anymore for a rigid body whatever its shape, symmetric or not (see Malleron et al. (2007)). The main
difficulty we are facing now is to couple the hydrodynamic problem with the elastic deformations of the
body. In practice, we must deal with the time varying shape of the wetted surface. This makes the problem
highly nonlinear since we want to solve a fully coupled problem. That is to say we prescribe the continuity of
both the stress and the velocity at the wetted interface. The usual way to solve the rigid case is to decompose
the inverse velocity of expansion of the wetted surface as polynomials of the position of the contact point
(see Mei et al. (1999) but also Wagner (1932)). This is quite reasonable for smooth body shape. Time
hence becomes a parameter. Then the Wagner condition (continuity of the vertical displacement at the
contact point) is solved by collocation thus providing the contact point at any instant since we previously
determined its history. Fortunately, even if the deformations might be high the shape is always smooth (no
cusp). Hence, we could solve the hydro-elastic problem in the same spirit. The time history of the elastic
shape has to be evaluated. The aim of the present study is to show how to proceed that way.

2) Boundary value problem

The boundary value problem is illustrated on the figure below
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It is formulated for the velocity potential ϕ and the deflection w.
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∆ϕ = 0 y < 0
ϕ = 0 on the free surface

ϕ,n = ~V · ~n + w,t(x, y, t) on the wetted surface D(t)
ϕ → 0 (x2 + y2) → ∞

ḣ = V (t)

L(w) + ρse(ẅ − V̇ ) = p(x, y, t) − pi(t) on the wetted part of the deformable body
w(x, y, 0) = h(0) = 0 at initial time t = 0

ḣ = Vini at t = 0

M ~̇V = −
∫

D(t) p(x, y, t)~nds Newton law of free falling

(1)

It corresponds to the free falling of a deformable body onto a liquid initially at rest. The simulation starts
when the body hits the liquid. In the sequel the velocity of penetration ~V is directed downwards and it is



noted ~V = −V ~y. The normal ~n is directed towards the fluid. The equations which couple the structural
and hydrodynamic problems are the continuity conditions at the wetted surface, both written in terms of
stress and normal velocity. The deflection of the membrane is measured, in a Lagrangian way, from its un-
deformed shape. The normal velocity due to the deformation is noted ẇ. On the other hand, the condition
of stress continuity makes appear an operator L(w) which is function of the considered shape. Actually it
may contain nonlinear terms. However these terms are spatial derivatives of w only.

In a first attempt the structure is supposed to have no bending stiffness and to be non extensible (con-
stant length of the total chord). Hence only radial deflection w is considered and this deflection only
depends on time t and some azimuthal angle θ (see previous figure). The structure is inflated and the inner
pressure is denoted pi(t); it is supposed to be only function of time but actually it should be constant due to
the assumptions made for the body if no change of temperature is expected. There exists a set of functions
wn over which the deflection w(x, y, t) can be projected :

w(x, y, t) =

∞
∑

n=1

qn(t)wn(θ). (2)

It measures the deflection from the undeformed body shape and qn are the weights of each mode. The
formulation of the problem is given for an arbitrary symmetric shape under the asumption that we are able
to find an analytical expression for the modal deformations wn. For particular shapes, such as cylindrical
cylinder section or wedges and for suitable boundary conditions, expressions of the wn are simple to obtain.

3) Hydrodynamic problem

The hydrodynamic problem is solved according to the assumptions of the so-called generalized Wagner
model as introduced by Zhao et al. (1996). This means that the boundary condition is prescribed on the
exact wetted surface but the free surface is linearized on lines emanating from the contact point. As the
problem is symmetric, there is only one contact point to determine, say a(t). The time integration of the
kinematic free surface condition is thus used to provide us with a(t) :

f(a(t), t) − h(t) =

∫ t

0
ϕ,y(a(t), η(a(τ), τ), τ)dτ. (3)

It should be noted that now the problem becomes much more complicated than the rigid case since the
shape of the body, denoted f , evolves locally in time. However we can assert that the vertical component
of the contact point only depend on a(t), if we admit that a(t) increases monotonically in time.

As done by Mei et al. (1999) and further developed by Malleron et al. (2007), conformal mappings
are used to transform the fluid domain into the half lower space. The hydrodynamic problem is then
reformulated as a Riemann-Hilbert problem and a quasi-analytical solution can be exhibited. Through the
successive conformal mappings used, the wetting surface becomes a unit circle (actually its half). The BVP
(1) is highly nonlinear and an iterative procedure must be implemented to converge towards its solution (see
figure below). At each iteration, the time evolution of the problem should be computed by iteration too. The
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history of the weights qn is built step by step by solving a differential system, detailed in the next section.
For each value of a(t), wich is considered as the evolution variable of the problem, the right hand side of



the differential system should be explicited. This requires both the computation of the velocity potential
and the knowledge of the expansion velocity of the wetting surface da

dt
. This latter data is known from the

previous computation of the wetting correction time history (first level of iteration). First we consider the
impermeability condition which is reformulated as

ϕ,n = −V ~y · ~n +

∞
∑

n=1

q̇nwn(θ). (4)

Knowing the shape at a given time, this allows to break down the potential ϕ into two components

ϕ(x, y, t) = V (t)φ(x, y, t) +

∞
∑

n=1

q̇nφn(x, y, t). (5)

Correspondingly the vertical velocity on the free surface, which appears in the integrand of (3), will be broke
down similarly. The body shape is fully described when a(t) and the weights qn(t) are known. If so the
components φ(x, y, t) and φn(x, y, t) are solutions of the following BVP respectively
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∆φ = 0 y < 0
φ = 0 on the free surface
φ,n = −~y · ~n on the wetted surface D(t)
φ → 0 (x2 + y2) → ∞,
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∆φn = 0 y < 0
φn = 0 on the free surface
φn,n = wn(θ) on the wetted surface D(t)
φn → 0 (x2 + y2) → ∞.

(6)

By using adequate conformal mappings, these BVPs are formulated as Riemann-Hilbert problems. We
denote α the azimuth in the complex plane where the body contour is a unit circle. After some manipulations,
we end up with the expressions of φ and φn on the body contour

φ(α) = −

∞
∑

m=1

Am sin(mα), φn(α) = −

∞
∑

m=1

Cmn sin(mα) (7)

which are quite similar and where the computation of Am and Cmn does not require a significant effort.

4) Coupled problem

The coupling is performed after some transformations of the time differential system for the deflection.
Attention should be paid to the fact that in practice, the hydrodynamic problem is solved for an associated
“double body problem” (see Mei et al.). The physical pressure is then given by Bernoulli law :

p(x, y, t) = −ρfΦ,t −
1

2
ρf (~∇Φ)2 = −ρf

dϕ

dt
+ ρf

d

dt
(V y′) + ρf

~̇X ~∇ϕ −
1

2
ρf (ϕ2

,x + (ϕ,y − V )2), (8)

where ρf is the density of the fluid and Φ the velocity potential in the “double body problem”. ~̇X is the
local velocity along the body contour and y and y′ are linked by : y′ = y − η(a(t)). We collect the non
linear terms that are denoted :

U(θ, t) = ρf
~̇X ~∇ϕ −

1

2
ρf (ϕ2

,x + (ϕ,y − V )2). (9)

Introducing this in the PDE for w, we get

L(w) + ρse(ẅ − V̇ ) = −ρf

d(ϕ − V y′)

dt
+ U(θ, t) − pi(t). (10)

We collect the time derivatives and we introduce the variable Q(θ, t) as

Q(θ, t) = ρse(ẇ − V ) + ρf (ϕ − V y′), (11)

yielding the differential system

ẇ =
Q

ρse
+ V − µ(ϕ − V y′), µ =

ρf

ρse
, (12)



Q̇ = −L(w) + U(θ, t) − pi(t). (13)

The variables w and Q are then projected on the normal modes and by using the orthogonality of these
functions for the inner product

∫ 2π

0
wm(θ)wn(θ)dθ = Wmnδmn. (14)

We end up with

q̇m =
Qm

ρse
−

2µ

Wmm

∫ θa

0
(ϕ − V y′)wm(θ)dθ, (15)

and :

Q̇m = −L(qm) +
1

Wmm

∫ θa

0
U(θ, t)wm(θ)dθ = RQ, (16)

where θa is the azimuthal coordinate of the contact point. The decomposition of ϕ in equation (5) is then
introduced in (15) which is written in a matrix form

∞
∑

p=1

Smpq̇p = Rq =
Qm

ρse
−

2µV

Wmm

∫ θa

0
φwm(θ)dθ, Smp = δmp +

2µ

Wmm

∫ θa

0
φpwm(θ)dθ. (17)

The equations (17) and (16) are solved in time to build the time history of qn(t) which is necessary to solve
equation (3). These equations are written as a Cauchy problem in the form

(

S 0
0 I

)( dq
da
dQ
da

)

=
1

U(a)

∞
∑

j=0

bja
j

(

Rq

RQ

)

. (18)

If the vertical velocity is not set as constant, Newton law must be time integrated as well.

5) Preliminary results

The figure below shows the history of the two first mode’s weight during the impact of an elastic wedge,
clamped at its apex and its instantaneous deformation when a(t) = 0.15. In that case, the mode’s shapes are
given by : wn(s) = Cm

(

cosh kms
R

− cos kms
R

)

−Sm

(

sinh kms
R

− sin kms
R

)

, where Cm and Sm are cofficients of
nondimensionalization. The wedge is made of a material with the following characteristics : E = 2.1.1011 Pa,
ν = 0.34 and ρ = 2700 kg.m−3. Its thickness is e = 0.01m and R = 1m.
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More details about the computation of the different coefficients will be given in the final communication as
well as more practical results.
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