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1. Introduction 
Larger and faster ships are far more vulnerable to the 
fatigue damage because of additional cyclic loading 
induced by springing excitation in high-frequency 
range. One of the most critical situations among others 
is the case of ultra-large container carrier where 
demand on high speed is utmost with unfavorable low 
torsional rigidity due to large deck openings. This leads 
to higher chances of resonant vibration between 
flexible hull and wave excitation. 
Bishop and Price(1979) used generalized concept, 
where dynamic response of the flexible hull was 
expressed in terms of its basic natural modes including 
six rigid body modes. Jensen and Dogliani(1996) 
carried out a detailed numerical study on nonlinear 
springing load using a second-order strip theory. 
Malenica et al.(2003) used a frequency-domain wave 
Green function method combined with finite element 
beam model which is able to capture both bending-
torsion coupling and warping deformation. In their 
study, verification through model basin test was carried 
out with a segmented model composed of 12 separated 
pontoon-like hulls.  
This study concerns ship hydroelasticity problem 
focusing on springing phenomenon with zero-forward 
speed under head and oblique sea conditions. A time-
domain Rankine panel method is used to represent 
fluid motion surrounding a flexible vessel, and a finite 
element method is used for structural response. 
Structural response is obtained by using a direct 
integration method, not relying on conventionally used 
modal superposition method. Expected benefits of 
using direct integration is easy extension of the 
numerical method to structural nonlinear problems 
where small deformation assumption is not valid any 
longer. To avoid numerical instability related to the 
added mass term, an iterative implicit method based on 
the quasi-Newton method is developed. The developed 
computer program is verified through the comparison 
with published experimental data, showing good 
agreement between the two results. 
 
2. Theoretical background 
2.1 Fluid/Structure Domain 
In order to obtain the solution of the coupled problem, 
physical domain is decomposed into two sub-domains, 
i.e, fluid and structure domains, where the former is 
handled by a boundary element method while the latter 
by a finite element method. Velocity field inside fluid 
domain is obtained by solving boundary integral 
equation introducing velocity potential, ),( txφ , 
satisfying Laplace equation. Linearized free surface 

boundary condition is to be applied on mean water line 
level. 
The presence of body in fluid domain invokes the 
linearized body boundary condition imposed on mean 
body location as Eqn(1). Unlike rigid body case, body 
boundary condition has to be treated separately for 
each panel due to the arbitrariness of deformation 
pattern of flexible hull.  
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,where subscript  means quantity of th panel and 
is velocity of the panel induced by structural 

deformation. Velocity of each panel can be obtained by 
interpolating nodal velocity of finite element.  
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Discrete algebraic equation can be obtained as Eqn(2), 
where and φ

n∂
∂ϕ  indicate disturbed potential vector 

and its normal derivative both at body and free surface. 
Bi-quadratic spline function is used to approximate 
potential distribution on both the body and free 
surface(Kim et al., 2007a). Submatrix A and R are 
influence coefficient sub-matrices. Subscript B and F 
mean body surface and free surface, respectively. 
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The response of flexible structure is calculated by a 
finite element method. Hull is modeled by 1D beam 
element which is computationally more efficient than 
3D shell model providing sufficient level of accuracy 
even though the simplification it takes. Timoshenko 
beam element with Hermitian polynomial is used in 
order to take into account the effect of shear 
deformation. The rate of change of twisting angle is 
added to the conventional 6-DOF beam element to 
consider warping distorsion, and coupling between 
bending and torsion is taken into account.  
Whole finite element equation is given in Eqn(3) along 
with its stiffness and mass matrix. Damping is realized 
in the model by using Rayleigh damping where 
damping matrix, C, is decomposed into mass 
proportional one and stiffness proportional one. 
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2.2 Coupling 
Strongly coupled approach for partitioned BEM-FEM 
domain is used in this study. Fixed-point iteration with 
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relaxation naturally fits to this partitioned approach 
since there is no further modification of existing 
program. However, fixed-point iteration is less efficient 
in terms of computation cost and, moreover, 
convergence is not always guaranteed. To overcome 
the limitation of fixed point iteration, quasi-Newton 
method for coupled BEM-FEM is developed in this 
study. For this, two Jacobian matrices for both fluid 
and structure domains need to be constructed prior to 
the analysis. 

where  is nodal deformation velocity. If Eqn(8) is 
rewritten in index notation, Eqn(9) can be obtained. In 
Eqn(9), index i corresponds to panel, index j to node. 

Nd

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⋅=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⋅=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⋅=

∂

⋅∂
=

∂

∂
=

∂

∂

N
j

N
ke

kkikN
j

N
kek

kik

N
j

P
k

kikN
j

P
kk

ikN
j

P
kn

ik
j

ihyd

d
B

d
B

d
B

d
B

d

d
B

d

p

d
Nn

dN
n

d
n

dn )(,,

(9) 

Let’s assume that both fluid and structure problems, f 
and s respectively, can be expressed in concise forms 
like Eqn(4), where p is fluid pressure at panel and d is 
structural deformation at node. All the variables in 
Eqn(4) are those of current time step, , dropping 
out the variables of previous time step which is priori 
known. 

tt Δ+
where  is normal vector of k-th panel and  is 
finite element shape function matrix of k-th panel(Kim 
et al., 2007b).  is deformation velocity of k-th 
panel and  is element nodal deformation velocity 
corresponding to the k-th panel. 
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For complete Jacobian matrix derivation, the 
contribution of restoring pressure acting on the flexible 
hull has to be considered as well. Restoring pressure at 
i-th panel is 

Applying Newton method to this coupled two 
equations, following linear equation can be obtained. 
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where  is the 3rd row of the shape function matrix 
evaluated at i-th panel and  is element nodal 
deformation corresponding to the i-th panel. 
Differentiation of the restoring pressure with respect to 
nodal deformation velocity yields, 
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From Eqn(5), the incremental change of solution, 
eventually leading to the converged one, can be 
calculated. Iteration needs to be repeated until there is 
no more solution change after subsequent iteration. 
Jacobian matrix in Eqn(5) can be obtained by solving 
fluid and structure tangent problem after discretization.  ( )
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Fluid Jacobian matrix, , upper right part of 
Jacobian matrix, can be obtained by looking into the 
response of panel pressure with respect to the variation 
of structural deformation. Eqn(6) shows Bernoulli 
equation, where all other terms but disturbed potential 
related ones were dropped out. Under zero forward 
speed assumption, the discretized version of linear 
Bernoulli equation can be obtained as shown in Eqn(6). 

FdD

where index i is that of panel, j that of node.  
Structural Jacobian matrix, , can be interpreted as 
the response of nodal deformation velocity with respect 
to the change of panel pressure acting on the hull. It 
can be found that nodal deformation velocity can be 
expressed in terms of excitation force as Eqn(12). This 
can be obtained without difficulty by handling time 
discretized FE equation using Newmark-β method. 
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Disturbed potential of current time step in Eqn(6) is 
determined by the body boundary condition imposed 
on the flexible body. By considering body boundary 
condition and original discretized boundary integral 
equation, Eqn(6) can be rewritten like Eqn(7), where 
matrix Bs are from influence coefficients. 
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F(p) is the nodal force vector of hydrodynamic 
excitation, which is the function of panel pressure. 
Matrix M2 contains all the variables of previous time 
step. Differentiating Eqn(12) by panel pressure will 
result in, where  is normal deformation velocity at each 

panel. Differentiating hydrodynamic pressure with 
respect to nodal deformation velocity results in Eqn(8). 
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Nodal force vector is composed of seven force 



components, that is, three translational ones plus three 
rotational ones including bi-moment. Nodal force is 
calculated by summing up all panel forces surrounding 
the i-th node after applying some weight factor on it 
which depends on the location of the panel inside the 
element. The weight factor is decided by the assumed 
interpolation function, in this case cubic polynomial 
function. Eqn(14) shows derivatives of nodal force 
component, in x, y, z direction, with respect to the 
panel pressure. Derivatives of vertical and horizontal 
bending moment as well as torsional moment can be 
obtained in similar way. 
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(a) Pt.1 
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(b) Pt.5 
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3. Analysis Results 
To verify the present method, numerical computation is 
carried out for a flexible model which was 
experimented by Malenica et al.(2003) and also Remy 
et al.(2006). Fig.1 shows hydrodynamic panel model 
used in the numerical analysis.  

(c) Pt.7 

ω (rad/sec)

ve
rti

ca
lm

ot
io

n
R

AO

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

               
(d) Pt.11 

   

Fig.1 Hydrodynamic panel model  
(full model for visibility)  Fig.2 Vertical motion RAOs of flexible body A   

(Experimental data from Malenica et al., 2003)  
The barge is made of 12 segmented pontoons, and each 
pontton is 0.19m long, 0.6m wide and 0.25m deep. 
Overall barge length is 2.445m and draft is 0.12m. 
Foremost pontoon is slightly modified as shown in 
Fig.1. 12 segmented pontoons were tied together with 
two 6mm×50mm steel plates placed side by side on 
the deck level in Malenica’s model (Model A). In 
Remy’s model (Model B), steel plates were replaced by 
10mm 10mm steel rod with same pontoon 
arrangement. The motion response of the flexible body 
is compared with a set of experimental data, as shown 
in Fig.2. Throughout the whole measuring points, 
agreement between experiment (Malenica et al., 2003) 
and numerical prediction is fairly good. 
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Fig.3 shows comparison of deformed hull under wave 
excitation. It can be seen that numerical results 
compare well with those observed in the experiment. 
This result is the case when wave length is about the 
size of the floating body with ω= 4.5 rad/sec. 
Fig.4 shows the pressure contours when wave 
frequency is 7.5 rad/sec. It can be seen that 
hydrodynamic pressure distribution on the flexible 
body is quite different from that on the rigid body 
thanks to resonant response in flexible body. It is 
interesting to note that in this resonant frequency case, 
unlike long wave case where pressure on rigid body is 
larger, hydrodynamic pressure on the flexible body is 



larger than that on the rigid body. 
 
 

  
(a) t=T 

  
(b) t=T+T/4 

  
(c) t=T+T/2 

Fig.3 Deformation under wave excitation, Model B 
(Picture from Remy et al., 2006, private 

communication) 
 

 

 
Fig.4 Comparison of instantaneous hydrodynamic 

pressure between flexible (Model B) and rigid bodies, 
ω=7.5 rad/sec, left at t= nT+T/4, right at t= nT+3T/4 
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Fig.5 Hydrodynamic pressure on the flexible 

body(Model B), β=120o, ω=4.0 rad/sec, left at t= nT, 
right at t= nT+T/2 

 
Fig.5 shows hydrodynamic pressure distribution on the 
flexible body when body is exposed to the incoming 
wave of 120o. It can be seen that the body deforms in 
such a way that bending and torsion take place at the 

same time along with rigid body motion making whole 
picture rather complicated. Unlike head sea case as in 
Fig.4, high hydrodynamic pressure develops on the 
side wall near midship due to horizontal bending mode. 
 
4. Conclusions 
Time domain hydroelasticity program is developed by 
combining BEM and FEM, each of which is used for 
fluid and structural domain respectively. Iterative 
implicit scheme is used for coupling two field equation 
and quasi Newton method is applied to obtain 
converged solution. Numerical solution obtained by 
developed computer program was compared with 
experimental data with good correspondence between 
the two. The direct time integration scheme adopted in 
this study for solving equation of motion is able to 
overcome incapability of modal superposition method 
when extension is needed to the problems where 
geometric nonlinearities of the structural deformation 
becomes considerable. 
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