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Novel methods and instrumentation are used to measure the elevation of the ocean
surface over large spatial domain and time. There are many purposes of such experi-
ments, where a few of them include: to document the wave population, study eventual
formation of extreme waves, and enhance the understanding of the processes leading to
wave breaking or white-capping that can be observed on the sea surface. An example
is the airborne measurements taken in the Gulf of Tehuantepec experiment (GOTEX)
off the Pacific coast of Mexico, see Melville et al. (2005). While the elevation of the
sea is measured, the orbital velocity is not. It has been a desire to use the measured
elevation as input to the calculation of the latter. The kinematics is precisely used as
input for a complementary analysis of the conditions where white-capping and wave
breaking are observed, where the latter is recorded by video-camera techniques. In the
field measurements, the surface elevation is typically recorded over swaths that are 5
km long and 200 m wide, where the length direction is along the main propagation di-
rection of the wave field. A typical resolution is 5 m in each direction which means that
the surface elevation is recorded in 40000 nodes. A typical wavelength is 70 m which
means an observational resolution of 14 nodes per wavelength. Given the measured
wave elevation η(x, t), where x = (x1, x2) denotes horizontal coordinate and t time,
one wants to calculate the fluid velocity of the wave field observed at the free surface.
The observations also indicate the presence of a current, which should be accounted
for in the analysis.

Analysis assuming potential flow. We assume that the wave field can be modelled
by potential flow. Let φ denote the velocity potential. We seek a relation between
the surface elevation, η, its time derivative, ηt, and the velocity potential, where the
gradient of the latter gives the orbital velocity. In the case of a horizontal current U,
the kinematic boundary condition at the free surface gives

V = φn

√
1 + |∇η|2 = ηt + U · ∇η, (1)

where n denotes the unit normal pointing out of the fluid and ∇ horizontal gradient.
The solution of the Laplace equation connects φn to the wave potential at the free
surface, denoted by φ̃, giving
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where S denotes the instantaneous free surface, r the distance between the evalu-
ation point (x, y) and integration point (x′, y′), both at the free surface, i.e. r =
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R2 + (y − y′)2, where R = |x′ − x|. y denotes the vertical coordinate. For conve-

nience we write η = η(x, t), η′ = η(x′, t), φ̃ = φ̃(x, t), φ̃′ = φ̃(x′, t), and so on. Using
that φndS = V dx the integral equation becomes
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Introducing the variable D = (η′ − η)/R, corresponding to the difference in the wave
elevation at two horizontal positions divided by the horizontal distance, we obtain that
1/r = 1/R + 1/R[(1 + D2)−

1
2 − 1].

Given the quantity V = ηt + U · ∇η, the task is to evaluate the potential φ̃. Using
Fourier transform, following Clamond and Grue (2001 §6), Grue (2002 §6), the integral
equation may be brought on the form
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where F denotes Fourier transform, F−1 inverse transform, k wavenumber in spectral
space, and k = |k|. The equation is solved for the wave potential by an iterative pro-
cedure, where a first approximation, φ̃1, is obtained by computing the terms involving
the given function ηt + U · ∇η. A next approximation is obtained by computing the
terms ηF−1{kF(φ̃)} + F−1{i(k/k) · F(η∇φ̃)} and (1/2π)F{∫
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dx′}, in (4), using φ̃1 as input, giving φ̃2. The iteration is continued

once more and has then converged. The horizontal orbital velocity is evaluated by
(u, v) = ∇φ̃ − (ηt + U · ∇η + ∇η · ∇φ̃)/(1 + |∇η|2)∇η.

Numerical sea. We illustrate the formulas by giving a numerical sea as input, and
discuss results obtained from field data elsewhere. The surface elevation and its time
derivative are obtained by superposition of several components of a spectrum, giving

η(x, t) =
M/2−1,N/2−1∑

m=−M/2,n=−N/2

Amn cos(kmn · x − ωmnt + θmn), (5)

where Amn =
√

2S(kmn)∆k1∆k2, kmn = (k̄, 0) + (m∆k1, n∆k2), kmn = |kmn|, ωmn =√
gkmn, and θmn are random numbers on the interval (0, 2π). As spectrum we use the

JONSWAP spectrum with γ = 5. Directionality is obtained by the function D(αmn) =
(1/β) cos2(παmn/2β), αmn = tan−1(k2,n/k1,m), with β < 0.7. (5) is in the examples
below evaluated at time t = 0, with Hs = 10 m and peak wavenumber kpHs = 0.467
(corresponding to a wavelength of 135 m). A large wave event at x1 = 3900 m, with
ηm = 7.9 m, kpηm = 0.367, U = 0 and β = 0, is illustrated in figure 1. The figure also
plots ηt at t = 0, with ηt estimated from

ηt(x, t) =
M/2−1,N/2−1∑

m=−M/2,n=−N/2

Amnωmn sin(kmn · x − ωmnt + θmn). (6)
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The linear estimate of the nonlinear ηt is used for illustrative purposes, see below. In
this study the wave field is not integrated forward in time.

Cancellation effects. Calculations of the nonlinear orbital velocity exhibit the fol-
lowing features:

1) There is an almost perfect cancellation among the two quadratic terms in (4). In-
dividually, the two terms are not small. This is particularly true in cases of large wave
events, as illustrated in figure 2, upper panel. The results show that the two terms have
same magnitude, but are of opposite sign. We note that the cancellation is perfect in
the case of an elevation on the form η(x1, t) = A cos(kx1 − ωt). The individual con-
tributions to the orbital velocity from [ηF−1{kF(φ̃)}]x1 and [F−1{i(k/k) · F(η∇φ̃)}]x1

are illustrated in figure 2, mid panel. The former term, which to leading order is ap-
proximated by [ηηt]x1 (with U = 0), increases umax from 5 m/s to 8 m/s at the wave
crest, and reduces the strength of the velocity at the wave trough. The second term,
[F−1{i(k/k) · F(η∇φ̃)}]x1 , has the opposite effect, however. The (almost perfect) can-
cellation of the quadratic contribution in (4) means that the term

∫
S φ̃′(∂/∂n′)(1/r)dS ′

on the r.h.s. of (2) is always very small.

2) A coarse approximation to the potential is obtained by φ̃0 = F−1{F(ηt+U ·∇η)/k}.
The (nonlinear) orbital velocity calculated with this input, evaluated at the position
of the free surface, is in fact very close to the nonlinear one, see figure 2, lower panel.
The nonlinear velocity is in fact smaller than the semi-linear one in this example. This
is explained by the multiplication of 1/r in the exact integral equation which is smaller
than 1/R in the approximation.

3) The almost perfect cancellation among the quadratic terms provides a reason why
nonlinear methods for wave computations of almost unidirectional seas converge rapidly
(and are so successful).
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Figure 1: – η [m], and dots ηt [m/s]. (t = 0).
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Figure 2:
Upper: – (ηF−1[kF(φ̃)])x1 ; dots (F−1[ik/k · F(η∇φ̃)])x1 [m/s].
Mid: – exact u; dots: u(φ̃ − ηF−1[kF(φ̃)]); crosses: u(φ̃ −F−1[ik/k · F(η∇φ̃)]) [m/s].
Lower: u [m/s] – full; x FFT-part; dots semi-linear.
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