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Water-on-deck phenomena can be identified as local events caused by severe sea waves interacting with the ship. Their
behavior is intrinsically transient and the involved time scales may be shorter or comparable with those of the incident
waves. The compact masses of water invading the deck represent a danger for the stability, the comfort, the local structural
integrity. The actual consequences depend on the vessel type and operational conditions, as well as on the incident-wave
parameters relative to the ship. The need to perform a time-domain nonlinear analysis represents an important limitation in
terms of CPU-time requirements when the seakeeping of a 3D vessel is examined. Therefore, as a first attempt to examine
the occurrence of water shipping for a real ship, the green-water investigation is coupled with a weakly-nonlinear model
for the prediction of the global vessel motions. This is made for sake of efficiency but leads also to reliable predictions in
many practical circumstances. Contemporary to the numerical development an experimental study has been started (see
the global view of the ship model set-up in figure 1). The aim is to investigate the features of wave-ship interactions when
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Figure 1: 3D experiments on a patrol ship model: global view.

varying systematically the incoming wavelength and steepness and the ship forward speed, with attention to occurrence of
water shipping and related local and global effects. The model tests also offered the opportunity to validate the developed
method and to draw its limits of applicability. Details of the experimental set-up and preliminary results of the ongoing
research activity are given in Greco et al. (2007).

Numerical model The solution of the seakeeping problem is based on the weak-scatterer theory (Pawlowski 1991): the
radiation and diffraction phenomena are governed by linear effects and may be estimated before the global-motion time
simulation. The ship motions are not small relative to the incoming waves so that the body-boundary condition must be
satisfied on the instantaneous wetted hull. Consistently, the Froude-Krylov and the hydrostatic contributions loads must
be estimated along the actual ship configuration, and the square-velocity term must be retained in the pressure. A second-
order consistent method can be developed with this approach (see Pawlowski 1991). Both regular and irregular wave
systems can be examined. The assumptions require the problem solution in time domain but the resulting solver remains
still quite efficient since only variables along the vessel must be estimated. For simplicity the procedure is explained for
the case of zero Froude number but the method is applicable also to advancing ships.
Preliminarily the linear radiation and diffraction problems are solved and related added-mass and damping coefficients
are estimated. The six radiation problems correspond to forced body motions with local normal velocity equal to the
generalized normal component ni (i=1,..,6) to the vessel. Within the weak-scatterer theory ni can be used as basis
functions to satisfy the body-boundary condition on the instantaneous wetted hull instead of along the mean configuration.
In particular, the instantaneous normal velocity at the wetted hull can be expressed as V n(x, t) =

∑i=N

i=1
βi(t)ψi(x) ,

with N=6, ψi = ni and βi unknown coefficients to be determined. At any time instant the vessel impermeability requires
that V n = V ship,n-V wave,n, where V ship is the local velocity of the ship in x and V wave is the corresponding local
incoming-wave velocity. Substituting this in the V n representation and enforcing the equality through a minimum least-
square approach, it furnishes the required equations to be satisfied by the unknown βi.
The global ship motions can be written in the form

Mξ̈ = F rsc + F 0 nlin + F h nlin + F wod δwod (1)

M being the mass matrix and upper dots indicating time derivatives. The generalized forces (forces and moments) are
decomposed in four terms. F rsc accounts for the disturbance to the wave field due to the presence and motion of the



ship. It is given by the integration of the corresponding pressure along the mean hull configuration, −[A∞β̇ +
∫ t

0
K(t−

τ)β̇(τ) dτ ] , rotated in the instantaneous ship configuration to account for body motions not small relative to the incoming
waves. Here β(t) is the vector of the coefficients ofψi(x) estimated at any time by enforcing the impermeability condition
along the instantaneous wetted hull. Further, because ψi = ni, A∞ coincides with the infinite-frequency added-mass
vector and K(t− τ) is the retardation function vector that can be obtained for instance through the integral link with the
damping-coefficient vector. F 0 nlin is the nonlinear (up to the second-order) Froude-Krylov load, F h nlin is the nonlinear
(up to the second-order) hydrostatic term F h nlin and F wod is the load caused by water-on-deck occurrence (i.e. when
δwod = 1). To improve the stability property of the equations system, in the numerical solution the term A∞ξ̈ is added
at both sides of (1). M is known from the ship structural properties, while A∞ and K(t − τ) are obtained using linear
theory, i.e. they refer to the mean ship configuration and can be estimated within a pre-processing. β, F 0 nlin, F h nlin

and F wod must be evaluated at any time instant. In particular, F h nlin and F 0 nlin account for the instantaneous body
configuration and F wod depends on both the ship motions and their first and second time derivatives.
Water shipping occurs any time the following criterion is satisfied: a portion of the deck contour (i) is characterized
by wave elevation greater than the local instantaneous freeboard (i.e. water level h greater than zero) and (ii) has a
water flux entering the ship deck. When conditions (i) and (ii) are satisfied or when water is already present on the
deck because of previous events, a local problem is studied for the water flow along the deck and described within a
local Cartesian coordinate system (x, y, z) with z normal to the deck. As basic assumption, because h is usually small
compared with the ship deck longitudinal extension, shallow water conditions are considered and wave dispersion effects
are fully neglected so that the governing equations can be approximated consistently with the nonlinear shallow water
theory for the unknowns h and the in-plane velocity components u and v, respectively, along x and y. This can be suitable
for water-on-deck events with global dam-breaking behavior, which are the most common, while it can not be applied for
instance to plunging-wave type water shipping (see i.e. Greco et al. 2007). The shallow-water equations must account
for the deck motion and are formally dependent on x, y and t. The problem is completed by the initial and boundary
conditions along the deck contour and along the deck house or other obstacles along the deck. The deck contour can
be characterized both by inflow conditions, occurring when conditions (i) and (ii) are satisfied, and outflow conditions,
valid when either (i) or (ii) is not verified. This means that both shipping and off-deck events can be simulated. The
internal-obstacle condition is given as a wall condition. The boundary conditions are enforced by applying a level-set
technique (see i.e. Colicchio et al. 2005): first the normal distance with sign φ (negative inside the deck/obstacle and
positive otherwise) from the deck/obstacle profile is associated at any location (x, y), then the corresponding velocity
vector U = (u, v) is expressed as

U = s(φ) U deck + [1 − s(φ)] U ext , (2)

where Udeck is the solution as obtained from the in-deck problem and U ext is the boundary condition given by the external
flow conditions around the vessel/ by zero velocity along an internal obstacle. Further, s(φ) is a smoothed approximation
of the Heaviside function equal to one onto the deck and zero otherwise(i.e. outside the deck contour/inside an obstacle).
In the vicinity of the deck contour, condition (2) is used if the close deck region is subjected to water flux entering the
deck, otherwise U = U deck is enforced which corresponds to an outflow condition. Condition (2) is always applied
near an internal obstacle. The boundary condition for the water level is treated similarly to that for U in the case of the
deck contour. Along an internal obstacle h is treated as an unknown of the in-deck flow problem if the flow is toward
the obstacle, otherwise dh/dn is enforced. To limit the CPU-time requirements associated with the numerical solution,
following Zhou et al. (1999) the two-dimensional shallow-water problem is converted in the summa of two quasi one-
dimensional sub-problems, respectively, along the x and y directions. A first-order scheme is used for the time integration
whose generic step consists of a sequential solution of the two sub-problems. This is performed using the solution from
the first sub-problem as initial solution for the other, so that the x-y flow interactions are accounted for. The quasi one-
dimensional sub-problems are solved using a Godunov’s method (see i.e. Toro 2001) to estimate the main convective
terms. All the spatial derivatives involved are calculated using a first order up-wind scheme to preserve the direction
of the convective terms. This is made introducing a Cartesian grid with Nx and Ny collocation points along x and y
directions, respectively. The water-on-deck model was validated simulating 2D and 3D dam-breaking cases without and
with an internal obstacle. Main comparisons with model tests and numerical 3D results have been reported in Greco et al.
(2007).
The in-deck problem may require a smaller time step, say ∆twod, than the global motions time step, say ∆t. If this is the
case, the body motions are frozen and the water flow onto the deck is simulated from t to t+∆t using the time step ∆twod.
Then the global loads due to the water on deck can be evaluated. More in detail the empirical formula for the deck pressure
by Buchner (1995) is applied in the form p = −ρ(an h + Vship,n∂h/∂t) . Here an is assumed as the fluid acceleration
normal to the deck (i.e. the gravity acceleration projected normally to the deck and corrected by the deck acceleration) and
Vship,n as the ship velocity component normal to the deck. This pressure expression is characterized by the shallow-water
hydrostatic term (accounting for the body accelerations in an) and by a dynamic contribution associated with the time
derivatives of the water level onto the deck and of the ship motions (related to the time change of fluid mass). Multiplying
pwith the generalized normal vector and integrating along the wetted deck it provides the generalized water-on-deck force



F wod which can be introduced in the motion equations (1) to calculate ξ at the new time instant. The numerical solution
of equations (1) is performed using a Runge-Kutta fourth order scheme. The convolution integrals involved are evaluated
assuming a local linear interpolation in time of the K(t− τ) and β̇ components and then integrating analytically.

3D seakeeping model tests Three-dimensional experiments were performed at the INSEAN towing tank on a patrol ship
model (INSEAN model C2364, scale 1:20) interacting with incident wave systems. In the first experimental campaign, the
model was tested without forward speed and free to oscillate only in heave and pitch because of its interaction with regular
incoming waves. The structural design ensured negligible elastic deformations. During the model tests the generated
waves were checked through suitable wave probes in the tank, a video camera was used to visualize the water-on-deck
events and was synchronized with motion, pressure and force measurements to permit a proper analysis of the wave-ship
interactions. To this aim, twelve markers have been distributed symmetrically on each side of the deck. Heave and pitch
ship motions were measured both directly and indirectly. In the first case the motions are followed through an optical
device; in the second case they are calculated through time integrations once an inertial platform system measured three
angular velocities and three accelerations at a known location of the model. The local green-water loads on the deck were
recorded by nine pressure sensors non-uniformly distributed along the ship centerplane going from the deck edge until
the vertical deck superstructure. The horizontal force induced on the deck vertical superstructure by its interaction with
the shipped water was measured by a high-frequency acquisition device.
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Figure 2: Water-on-deck event: top view. Top: experiments. Bottom: numerics. Time increases from left to right with
time intervals: 0.2s, 0.4s and 0.7s. Regular incoming waves long λ = L and steep kA = 0.2474. Numerical simulations
with ∆x = ∆y ' 0.0015L for the in-deck problem and with ∆t = 0.01T for the global-motion time integration. T is
the incoming-wave period.

Analysis of green-water effects Here an experimental case is examined and measurements and numerical results are
used to highlight features and global effects of water-on-deck events. The case refers to incoming waves long λ = L and
steep kA = 0.2474, with L the ship length, λ the wavelength, k the wavenumber and A the wave amplitude. The cyclical
interaction with the vessel is responsible for significant water shipping with liquid remaining onto the deck between two
following water-on-deck events. Figure 2 shows the water-on-deck scenario associated with these wave parameters, as
recorded in the tests (the images are in the carriage reference frame) and predicted numerically (the results are in the



deck reference frame). The water enters from the top and eventually interacts with a vertical superstructure placed on the
bottom but not visible in the images. The water-on-deck phenomenon appears like a plunging plus dam-breaking type
event (see i.e. Greco et al. 2007). The initial plunging is supported by the presence of a freeboard slightly higher than the
deck height. The newly shipped water develops in the form of an inner faster tongue and hits the liquid remained on the
deck from a previous water shipping which is mainly moving toward the bow to exit the deck. The impact induces some
water to leave the deck laterally and causes experimentally a conspicuous amount of spray. The water entering the deck is
more energetic so that after the impact most of the liquid moves toward the vertical superstructure, hits the wall and rises
along it. Later the gravity action causes the water fall and induces a flow leaving the deck, in the meanwhile the wave-ship
interaction is setting a new water shipping event. The comparison between numerical and experimental results shows a
promising agreement. Figure 3 documents the experimental and numerical heave and pitch time histories. Numerically

4 5 6 7

-0.2

0

0.2

0.4

t/T

ξ /3 A Experiments
Numerics without water-on-deck loads
Numerics with water-on-deck loads

4 5 6 7

-0.3

0

0.3

0.6

t/T

ξ /5 kA
Experiments
Numerics without water-on-deck loads
Numerics with water-on-deck loads

Figure 3: Heave (left) and pitch (right) time histories. Regular incoming waves longλ = L and steep kA = 0.2474. Heave
is positive upwards and pitch is positive with bow down. Numerical simulations with ∆t = 0.01T for the global-motion
time integration. T is the incoming-wave period.

two simulations have been performed, respectively, neglecting and accounting for Fwod in the global-ship motions. The
comparison of the two results with the experimental data highlights the importance of water-on-deck occurrence for the
heave motion. In particular, the shipped water acts as a damping and as a source of nonlinearities. The effect on the pitch
moment is limited and mainly localized near the minimum values which are reduced by water on deck. The results will
be further investigated at the Workshop. Presently the pressure and force measurements are under investigation. Related
results and comparison with the numerical solution will be also presented at the Workshop.
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