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Introduction 

 In certain cases of extreme wave loading it 

is important that the numerical simulation 

model should include both viscous effects and 

wave breaking.  This usually means solving 

the Navier Stokes or RANS equations 

together with a two-fluid interface capturing 

approach, such as level set or volume of fluid 

(VoF), in which the fluid dynamics equations 

are solved both in the air and water.  Recent 

advances in development of high resolution 

advection schemes for the interface mean that 

some of the previous disadvantages of VoF 

methods, such as interface smearing, have 

been overcome (see e.g.Ubbink, 1997). 

In this work, the development of a 

numerical wave tank for investigation of 

breaking waves is presented.  A finite volume 

discretisation for DNS simulation of the 

Navier-Stokes equations by pressure-based 

iteration is used together with the volume of 

fluid method.  The calculation is carried out 

both in the air and water and the free surface 

between them captured using a high 

resolution technique.  Two alternative 

approaches to simulation of breaking waves 

are discussed.  In both cases, a periodic 

domain is used and the simulation is started 

from the initial condition determined by 

analytical theory for a water wave.  In the first 

case the numerical wave tank is initialized 

using a Stokes third order approximation with 

wave steepness greater than the breaking 

threshold.  The second approach is to allow 

two shallow waves to interact and combine to 

form a steep wave that may break.  

Steep Wave in a periodic domain 

In this first example, a steep gravity water 

wave is simulated in a domain with periodic 

boundary conditions.  The fluid properties and 

initial conditions are the same as those used 

by Chen et al. (1999), Iafrati (2006) and 

Greaves (2007) and this study extends the 

preliminary results presented there.  The 

width of the domain is one wavelength, b = λ, 

the water depth is h = b/2 and the initial 

condition for the wave elevation, η is 
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where λπ /k 2= , a is the wave amplitude and 

the initial wave slope ak=ε .  The initial 

velocity field in the water is 
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where )ak(gk 221−=ω  and the air is 

initially at rest.  The acceleration due to 

gravity, g = 9.81m/s
2
 and the liquid Reynolds 

number is given by ( )l2321 υλ /gRe //= . 

 The limit for breaking is given by 

Longuet-Higgins (1985) to be approximately 

ak = 0.443.  Each of the simulations in this 

section are calculated on a regular 256 x 256 

grid.  First a non-breaking case, ak = 0.2, is 

calculated.  The ratio of density in air and 

water, =la ρρ  0.01, the ratio of dynamic 

viscosities, =la µµ  0.4 and the liquid 

Reynolds number, Re = 3132.  The time series 

of free surface profiles is given in Figure 1 



 

and shows the smooth repeating form of the 

wave.  The profiles are plotted with the mean 

water level at their simulation time in seconds 

in the vertical direction and a second 

wavelength is plotted on the right hand side of 

each to clarify the figure.   
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Figure 1 Time sequence of wave profiles, ak = 

0.2, Re = 3132, =la ρρ  0.01, =la µµ  0.4. 

 Next, a series of steep waves with ak = 

0.55, beyond the breaking limit, is calculated 

and results presented in Figures 2 - 5.  In 

Figure 2, the Reynolds number is Re = 3132, 

=la ρρ  0.01, =la µµ  0.4; in Figure 3, the 

Reynolds number is increased to Re = 10,000; 

in Figure 4, the density ratio is reduced to 

=la ρρ  0.001; and in Figure 5, the viscosity 

ratio is reduced to =la µµ  0.017.   
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Figure 2 Time sequence of wave profiles, ak = 

0.55, Re = 3132, =la ρρ  0.01, =la µµ  0.4. 

−0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

 

Figure 3 Time sequence of wave profiles, ak = 

0.55, Re = 10
4
, =la ρρ  0.01, =la µµ  0.4. 
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Figure 4 Time sequence of wave profiles, ak = 

0.55, Re = 10
4
, =la ρρ  0.001, =la µµ  0.4. 
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Figure 5 Time sequence of wave profiles, ak = 

0.55, Re = 10
4
, 

=la ρρ
 0.001, 

=la µµ
 0.017. 



 

Features of the wave, such as the 

steepening of the wave, development of a 

plunging jet and successive splash ups are 

similar to those observed by Iafrati (2006) and 

Rapp and Melville (1990), as discussed by 

Greaves (2007) previously at this Workshop.  

 Here, we investigate how in each of the 

successive simulations, the physical 

properties are closer to those of air and water 

and the predicted breaking becomes more 

violent.  As the Reynolds number is 

increased, wave breaking is initiated earlier 

and the overturning jet is sharper.  This effect 

is increased when the density ratio is reduced 

in line with the physical properties of air and 

water in Figure 4.  In Figure 5, the viscosity 

of the air is reduced and this further sharpens 

the jet as the crest overturns and increases the 

predicted spray associated with the breaking 

event.  Reducing the liquid viscosity to that of 

water would lead to a much higher Reynolds 

number, O(10
6
) and turbulence would need to 

be taken into account in the numerical model. 

Interaction of two linear waves 

 Another approach to investigating wave 

breaking is to allow two regular waves to 

interact, as used by Rainey (2007) to 

demonstrate particle escape.  Here, waves are 

defined in a periodic domain, as above, but 

the waves are given initial velocity and free 

surface profiles from linear theory.  The two 

waves have 2:1 length ratio, and their 

parameters are wavenumber, k1 =6.28 and k2 

= 12.57, frequency, 1ω and 2ω (assuming deep 

water, kg=ω ) and amplitude a1 and a2.  The 

initial conditions for surface elevation and 

particle velocity are given by linear theory as 
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Results of simulations with increasing values 

of wave steepness, k1a1 = k2a2 are presented 

to illustrate the progression to wave breaking.  

In Figures 6 – 9, wave profiles are plotted for 

k1a1 = k2a2 = 0.17, 0.18, 0.19 and 0.22.  

Physical properties are set up such that Re = 

10
4
, =la ρρ  0.001, =la µµ  0.017 and g = 

9.81 m/s.  As before, in Figures 1 – 5, a 

second wavelength of the longer wave is 

plotted alongside the first for clarity. 
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Figure 6 Interacting waves, k1a1 = k2a2 = 0.17. 
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Figure 7 Interacting waves, k1a1 = k2a2 = 0.18. 

 Although the steepness of each wave is 

considerably less than the breaking limit, the 

two waves interact with one another and may 

break.  Similar calculations were carried out 

by Rainey (2007) using a fully-nonlinear 

potential flow program based on the boundary 

integral method, which is able to predict the 

wave profile up to breaking, but breaks down 



 

after the crest jet is formed.  Rainey (2007) 

investigated the threshold for wave breaking 

and particle escape as an indicator for wave 

breaking.  When computed with first order 

initial conditions, these limits were ka = 0.19 

and 0.17 respectively and when initiated with 

second order wave profile and velocity 

potential, the thresholds were predicted to be 

ka = 0.18 for wave breaking and 0.21 for 

particle escape. 

−0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

 

Figure 8 Interacting waves, k1a1 = k2a2 = 0.19. 
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Figure 9 Interacting waves, k1a1 = k2a2 = 0.22. 

 In this work, wave breaking is evident for 

ka = 0.17 and increases in violence as the 

wave steepness is increased.  The mode of 

breaking can be seen to progress through 

Figures 6 – 9 from spilling towards plunging 

(Bonmarin, 1989). 

Conclusions 

In the preliminary results presented here, the 

method is shown to be a valuable tool for 

investigating wave breaking and nonlinear 

wave interaction.  The aim is to extend the 

method to simulate extreme wave loading on 

and overtopping of coastal, offshore and 

floating structures.  In order to do this, the 

wave must be generated by defining a 

wavemaker boundary condition at the inlet on 

the left hand side of the tank and to have the 

initial condition of stationary still water.  The 

wavemaker boundary condition may be 

applied either as a moving piston or as 

imposed velocity and wave elevation at the 

wavemaker, using either linear of higher order 

wave theory.  This step introduces difficulties, 

such as problems of reflection from the right 

hand wall and instability generated by the 

large difference in density between the two 

fluids.   
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