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Screens are used to damp sloshing in antirolling tanks and Tuned Liquid Dampers. An important 
consideration is that the screen should not significantly affect the highest sloshing period. The 
damping effect of the screen may for solidity ratios 0.5Sn <≈  be estimated by considering each 
wire individually, using empirical drag coefficients and by accounting for the blockage effect on 
the in-flow velocity. The solidity ratio Sn is the ratio of the area of the shadow projected by wire 
meshes on a plane parallel to the screen to the total area contained within the frame of the screen. 
The Reynolds number based on the wire diameter is small, e.g. 50 in model test conditions. Fig. 
1 shows satisfactory agreement between model tests and our linear potential flow theory with 
nonlinear damping coefficients. The  forced longitudinal motion and the longitudinal 
hydrodynamic force are defined as 1 sina tη σ  and ( )1 sinaF t 1σ ε− , respectively. 

 
Fig. 1 Steady-state wave amplitude A , longitudinal hydrodynamic force amplitude and phase  of a 
rectangular tank with wire mesh (

1aF 1ε
)0.48Sn =  in the middle of the tank that is forced longitudinally with 

amplitude  and circular frequency σ . The water depth-to-tank length ratio . The 
tank breadth B  and length l  are 0.2m and 0.4m. The experimental values by Warnitchai & Pinkaew (1995) are 
denoted as ● and □ (Faltinsen et al., 2009).  
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     A different approach has to be followed for screens with larger solidity ratios and for swash 
bulkheads. If the ratio between the area of the holes and the area of the bulkhead is small, an 
important effect is the change of the highest un-compartmented natural sloshing period to a 
lower value where sloshing is less severe. The effect of perforated plates and screens on natural 
sloshing frequencies can for any -value be evaluated by using formulae representing the 
pressure loss through a screen. When  is the uniform ambient cross-flow velocity, the 
pressure loss can be presented as follows  

Sn
( )U U t=

 ( ) 1
2 |p p K U Uρ− +− = |

( ) cosat tσ=

                                                

. (1) 
Here p  and p  are the pressures at the two opposite sides of the screen and  is the loss 
coefficient, which is a function of the solidity ratio Sn , Reynolds number and the screen 
structure. Eq. 

− + 0K ≥

(1) follows from generalising expressions for steady ambient flow (Blevins, 1992; 
Roach, 1986) and assuming a small influence of the Keulegan-Carpenter number. The pressure 
loss coefficient changes from 0 when there is no screen or perforated wall ( ) to ∞  when  
the screen or perforated plate becomes a solid wall ( ). We consider as an example a 
rectangular tank with length l  and liquid depth h , and a wire-mesh screen as shown in 

0Sn =
1Sn =

Fig. 2 (a). 
The tank is forced with  sway motions . This harmonic forcing excites only ( )2 2η η
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‘odd’ modes in a rectangular tank without screens. When  and  , the forcing 
causes resonance at   

0Sn = 1Sn =

 ( )0 (2 1)/ tanh (2 1) / ,      1, 2, ...Sn
k g k l k h l kσ σ π π== = − − =  (2) 

 ( )1 2 (2 1)/ tanh 2 (2 1) / ,      1, 2, ..Sn
k g k l k h l kσ σ π π== = − − = .
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The lowest natural modes associated with  and  have wave profiles as in 0
1
Snσ = 1

1
Snσ = Fig. 2 (b) 

and (c), respectively. 

 

 

Q Q

a a

h

z

0 0

− +

yΣ0 Σ0

+−

(a) (c)(b)

Fig. 2 A two-dimensional 
rectangular tank with a 
screen in the middle. Parts 
(b) and (c) demonstrate the 
lowest natural modes in the 
limit cases Sn  and 

, respectively.  
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     How the lowest natural frequency changes from  to  as Sn  varies in the interval 

 can be analyzed by using the domain decomposition method with notations in 

0
1
Snσ = 1

1
Snσ =

[0,1] Fig. 2 (a). 
For each domain  and , we introduce the velocity potentials  and , and the surface 
waves by . The boundary conditions of the linear sloshing theory should be fulfilled 
for  and  on the wall,the bottom and the mean waterplane. In addition, the horizontal 
velocities on the screen are equal, i.e.  

0Q
−

0Q
+ +Φ −Φ

( , )z yζ±=
±Φ ζ±
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When assuming that  is known, solving linear sloshing problems in  and  makes the 
velocity potential and, therefore, pressure  to be functions of U . 
Substituting the pressure into eq. 

U 0Q
−

0Q
+

( /p ρ± ±= − ∂Φ ∂ + )t gz

)

)

(1) leads to a nonlinear equation with respect to U . This 
nonlinear equation has an analytical solution when . It can be considered 
as a one-term approximation of the following Fourier representation of the transverse velocity at 

the screen . The one-term approximation 

represents a spatially averaged cross-flow along the screen. Our focus is on steady-state flows 
due to harmonic forcing, i.e. 
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     An analytical solution of the linear sloshing problem in the domains  and  can be 
found by using the linear modal technique developed for sloshing due to wall deformations 
(Faltinsen et al., 2009). This implies   

0Q
−

0Q
+

  (5) (0
1

( , ) ( ) / ( )cos /j
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y t t h a t jy aζ α β π
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± ±

=

= ± +∑
and an associated modal representation of the velocity potential  depending on  
and . For steady-state solutions,  and we can find 

( , , )y z t±Φ 0( )tα
( )j tβ± ( ) ( )1 2( ) cos sinj j jt b t b tβ σ± ± ±= + 1jb

±  and 

2 jb
±  analytically as functions of  and . The harmonically oscillating pressures p  and 

 also depend on   and . Gathering cos(  and -terms in eq. 
2aη 01 02,a a +

p− 2aη 01 02,a a )tσ sin( )tσ (1) gives the 
following nonlinear system with respect to  and  01a 02a
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The solution of the system (6) can be presented as  

 , (7) 2 2
01 2 1 1 02 2 1 0 1 1 1 0/ ,      / ;     a aa CC a CC Cη η ρ=− Λ = Λ Λ = + Λ

where  is a positive root of the nonlinear equation . 0ρ ( )2 2 2 2 2 2
2 0 1 0aC Cη ρ ρ= +

     For the screens with round wires the loss coefficient can be approximated as (Blevins, 1992; 
Roach, 1986) 

 . (8) 2(1 (1 ) )/(1 )K Snβ= − − −
Here β  is a function of the Reynolds number  where  is the wire diameter and 

 is the amplitude  of the velocity U . The Reynolds number is small for the following studied 
cases and, generally speaking, causes a variation of β . Based on Blevins (1992), we assume β  
to be constant. The corresponding table in Blevins (1992) gives  for ; this is 
the lowest Rn -value in the table. It is adopted in the forthcoming calculations.  

/aRn U d ν= d
aU

1.3β ≈ 20Rn =
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Fig. 3 Maximum non-dimensional wave elevation at the wall versus the forcing frequency for  and 
different solidity ratios.  

/ 0.h l = 3
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     Using the explicit form (8) in eq. (6), we can get an estimate of the resonance frequencies. 
The first series of numerical examples are presented in Fig. 3 for the maximum wave elevation 
at the wall, ma  computed by formula x | ( , ) |a tζ+ (5). It includes resonance response (scaled by 
the forcing amplitude) for  and different solidity ratios. When the solidity 
ratio is far from 1, e.g. , 

/ /(2 ) 0h l h a= =

0.3Sn = Fig. 3 clearly demonstrates resonances at  and 
 associated with antisymmetric modes in a tank without screens. The larger 

0
1
Snσ σ ==

0
3
Snσ σ ==



nondimensional forcing amplitude  gives larger damping, i.e. the peaks in 2 /a lη Fig. 3 become 
smaller. When Sn  increases, the peaks disappear. However, we see an emerging peak between 
them corresponding to . This occurs earlier for larger forcing. When  for the 
presented results, the largest non-dimensional response occurs for the largest forcing, i.e. there is 
a decreasing flow through the screen with increasing forcing. This tendency is opposite of what 
happens at lower solidity ratios. If we want to get rid of resonance oscillations in the tank at its 
lowest natural frequency without a screen, the results imply that the solidity ratio should not be 
too close to 1 in order to minimize sloshing. 

1
1
Snσ σ == 0.85Sn ≥

     The described method makes it also possible to establish the lowest sloshing frequency 
versus the solidity ratio. As it is attributed by an equivalent linear mechanical system, the lowest 
frequency is related to the  phasing between the input cos-like signal and the surface 
response. Note, that for studied case, it is the same as the lowest root of the equation 

. 

090

01 2aa Dη 10     0D= ⇔ + =

5

 
Fig. 4 The lowest natural 
frequency versus the 
solidity ratio and different 
liquid depths and forcing 
amplitudes.  
    Results for the lowest 
sloshing frequency are 
presented in Fig. 4. 
Because of the 
simplification in the 
approximation of 

, the method 
gives a small error of 

 as . The 
reason is that the horizontal velocity at  should decay exponentially with submergence. 
Numerical experiments show that the assumption for  leads to only 0.1% of error for the 
lowest natural frequency as . The error increases with liquid depth (up to 1% for fairly 
deep water). It is also larger, up to 5-7% for higher modes, for which exponential decay of the 
velocity is more important than for the lowest mode. The results do not confirm Dodge’s (2000) 
rule-of thumb that if the total area of the perforations exceed 10% of the bulkhead area, the 
liquid tends to slosh between the compartments and the slosh natural frequency tends to 
approach the value of an un-compartmented tank. A reason may be that part of the results in 

( )U U t=

0
1
Snσ = 0Sn →

0y =
U

/ 0.h l ≤

Fig. 
4 is for higher forcing amplitudes than Dodge (2000) based his conclusions on. For instance, if 
the total area of the opening in the screen is less than  of the cross-sectional area of the 
tank and the ratio ε  between the forced sway amplitude and the tank breadth is equal to 0.05, 

20%∼

Fig. 4 shows that the lowest un-compartmented natural frequency disappears. The highest sway 
amplitude divided by the cylinder diameter in the experiments that Dodge referred to was 
0.00833. Further, it must be investigated to what extent the fact that Dodge (2000) referred to 
tests with perforated plates in a vertical circular tank influence the results.  
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