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Abstract

Under the assumptions of the linearised
theory of small-amplitude water waves,
it is proved that a semi-immersed two-
dimensional circular cylinder of radius a,
floating on the surface of a fluid of infinite
depth, and free to respond in heave and
sway, is capable of totally reflecting an in-
cident plane wave at a particular angular fre-
quency. Numerically this is shown to occur at
a single non-dimensional frequency given by
Ka ≈ 1.126 where K = ω2/g (g is gravita-
tional acceleration, ω/2π is frequency). This
remarkable result is used to construct exam-
ples of motion trapped modes, involving pairs
of identical circular cylinders each moving
freely in heave and sway. Symmetric oscil-
lations correspond to a motion trapped mode
for a single cylinder next to a vertical wall;
antisymmetric oscillations can be interpreted
as motion trapped modes for a single cata-
maran structure with twin semi-circular hull
profiles.

1. Introduction

As part of our abstract at last year’s Work-
shop we showed how it was possible to con-
struct motion trapped modes directly for a
pair of heaving rectangular cylinders in two
dimensions. Such modes are known to ex-
ist in the vicinity of a freely floating body
and do not radiate their energy away. If
such a body were to be displaced from rest
and released, the ultimate motion would con-
sist of a simple harmonic oscillation at the
trapped mode frequency which persisted in-

definitely. McIver & McIver (2006) were the
first to construct pairs of identical bodies
which exhibit motion trapping, using an in-
verse method. Our method was more direct.
We first showed that a rectangular cylinder
of certain dimensions, constrained to move in
heave only, was capable of totally reflecting
an incident wave at a particular frequency.
Then wide-spacing arguments were used to
show that an identical mirror-image of the
cylinder could be placed at an appropriate
distance from the first cylinder so as to trap
the wave motion between them thereby con-
structing a motion trapped mode for a cata-
maran pair oscillating in heave. This was con-
firmed using full linear theory to construct
motion trapped modes for two identical rect-
angular cylinders in free heave which need not
be a large distance apart. It was also noted
that for a freely-floating half-immersed cir-

cular cylinder constrained to move in heave
only, the phenomenon of total reflection of an
incident wave did not occur at any frequency.
This was assumed to be because, unlike the
rectangular cylinder, only one geometric pa-
rameter was available to be varied. We also
commented in passing that even if the cir-
cular cylinder is allowed to respond in sway
as well as heave to the incident wave, total
reflection still did not occur. That statement
was wrong. The following analysis shows that
such a cylinder, free to respond in both heave
and sway to an incident wave, (because of
symmetry roll does not arise) does indeed re-
flect all the energy at a well-defined unique di-
mensionless wavenumber Ka ≈ 1.126 where
K = ω2/g and a is the radius of the cylinder.



2. Scattering by a single freely-

floating cylinder

Two-dimensional coordinates (x, y) are used
with y vertically upwards and y = 0 aligned
with the undisturbed free surface of a fluid
of infinite depth. We assume a plane wave
of frequency ω/2π is incident from x = +∞
on the cylinder which responds with the
same frequency. Then we may write Φ =
∑

2

i=1
UiΦRi

+ ΦS where ΦS is the scattered
potential due to a unit amplitude incident
wave on the cylinder assumed to be held
fixed, ΦRi

and Ui are radiation potentials and
component velocities, with i = 1, 2 corre-
sponding to heave and sway respectively. We
have

ΦRi
∼ {sgn(x)}i−1Ai e

iK|x|−Ky, |x| → ∞
(1)

(i = 1, 2), so that Ai are the far-field radi-
ated wave amplitudes, whilst K = ω2/g is
the wavenumber with g gravitational acceler-
ation,

ΦS ∼

{

(g/ω)(e−iKx + ReiKx)e−Ky, x → ∞

(g/ω)T e−iKx−Ky, x → −∞

(2)
where R and T are the reflection and trans-
mission coefficients for the fixed cylinder, de-
pendent on frequency. It follows that

Φ ∼

{

(g/ω)(e−iKx + R1e
iKx)e−Ky, x → ∞

(g/ω)T1e
−iKx−Ky, x → −∞

(3)
and combining (1)–(3) gives

R1 = R + (ω/g)

2
∑

i=1

UiAi

T1 = T + (ω/g)

2
∑

i=1

(−1)i−1UiAi























so that

R1 + T1 = R + T + 2(ω/g)U1A1

R1 − T1 = R − T + 2(ω/g)U2A2.

}

(4)

The equations of motion applied to the cylin-
der of mass M in each component are

−iωMUi = FRi
+ FSi

+ F ext
i

= (iωaii − bii)Ui + FSi
− iδi1λUi/ω,

(5)

where FSi
is the vertical (i = 1) and horizon-

tal (i = 2) exciting force on the fixed cylinder,
and the last term is the hydrostatic restoring
force in heave with λ = 2aρg. FRi

are the
forces on the cylinder due to the forced mo-
tion of the cylinder in heave (i = 1) and sway
(i = 2), each decomposed into its added-mass
and (non-negative) radiation damping com-
ponents aii and bii respectively. Equation (5)
may be written

bii(1 − iCi)Ui = FSi
, (i = 1, 2) (6)

where

Ci = {(M + aii)ω
2 − δi1λ}/biiω. (7)

(i = 1, 2). If we now use the Haskind relation,
the Newman relations, and the relation be-
tween the radiation damping coefficients and
the far field amplitudes, we find that

(ω/g)UiAi = −(R − (−1)iT )/(1 − iCi), (8)

(i = 1, 2). Thus, we have

2R1 = (R + T )(C1 − i)/(C1 + i)

+(R − T )(C2 − i)/(C2 + i)

2T1 = (R + T )(C1 − i)/(C1 + i)

−(R − T )(C2 − i)/(C2 + i).

It follows that T1 = 0 provided

C1C2 + 1 − (C1 − C2)χ = 0, (9)

where R/T = iχ and χ is real from the results
|R ± T | = 1 which arise from symmetry. It
follows that χ = ±|R|/|T |. It is not obvious
which sign to take but computations make
it clear that for the cylinder, χ = −|R|/|T |.
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Figure 1: Reflected and transmitted wave am-

plitudes against Ka for a freely-floating cylinder

Since C2 > 0, it is convenient to replace this
by

f(Ka) ≡ (C1 +χ)+C−1

2
(1−C1χ) = 0. (10)

It is possible to prove that (10) does indeed
have a real solution and hence that there ex-
ists a frequency at which T1 = 0. A va-
riety of asymptotic results are used in the
proof of the result. Together these show
that f(Ka) ∼ −1/(2Ka), Ka → 0, and
f(Ka) ∼ 1

4
π(Ka)6(π2 + 4) as Ka → ∞.

Thus f(Ka) changes sign and there must
exist a value of K = K0, say, for which
f(K0a) = 0. This remarkable result is con-
firmed by numerical calculations which show
that there is just one value of Ka = K0a =
1.12594 (to 5 d.p.’s) satisfying equation (10).

Fig. 1 shows the reflected and transmitted
amplitudes, |R1| and |T1|, for a freely-floating
semi-immersed cylinder where it can be seen
that T1 = 0 at K = K0.

We have shown, in contrast to the case of
a half-immersed circular cylinder either fixed
or free to move in heave or sway only, which
always transmits some of the energy in an
incident plane wave, that if such a cylinder
is free in both heave and sway, there exists a
unique frequency for which total reflection of
the incident wave takes place.

On the basis of this result we can be con-
fident that two such identical cylinders each
free to move in heave and sway, and suffi-

ciently far apart, can support a localised mo-
tion trapped mode between them by appeal-
ing to a wide-spacing argument. Thus, for
two cylinders whose centres are separated by
a distance 2b, the wide spacing argument pro-
vides the approximation

Kb = −1

2
arg{R1} + nπ, n ∈ Z (11)

for an oscillation symmetric about a line bi-
secting the cylinders, at the frequency at
which |R1| = 1. An extra 1

2
π is added to

the right-hand side for antisymmetric modes.

3. Motion trapped modes for

pairs of cylinders

As the above is only approximate, we need
to consider the full unapproximated linear
equations for a pair of freely floating circular
cylinders, and determine the conditions un-
der which a motion trapped mode can exist
when they are allowed to move in heave under
hydrostatic forces but in addition are free to
move in sway. We approach this problem by
considering the equivalent problem of a sin-
gle cylinder next to a vertical ‘wall’ on which
a Neumann/Dirichlet condition is placed for
symmetric/antisymmetric oscillations. Ursell
(1964) has solved the problem of the initial
displacement of a single cylinder in the ab-
sence of the wall and our formulation follows
his closely but with the inclusion of the wall.
Thus we give the cylinder a small displace-
ment x1(0) vertically before releasing it. In
contrast to the Ursell problem, the wall will
induce a horizontal motion which we have
to allow for. We use Fourier transforms to
solve the problem, and we find that the trans-
formed equations of motion are

(Mω2 − λδi1)U
w
i (ω) = λδi1x1(0) + iωFw

Ri
(ω),
(12)

(i = 1, 2) where the superscript w refers to
the presence of the wall. In terms of added
mass and damping coefficients,

F w
Ri

(ω) = (iωaw
ii − bw

ii)U
w
i (ω)

+(iωaw
ij − bw

ij)U
w
j (ω),



(i, j = 1, 2, i 6= j) in which aw
12

= aw
21

, bw
12

=
bw
21

. Substitution into (12) gives

(Cw
i + i)bw

iiU
w
i (ω) + (Cw + i)bw

ijU
w
j (ω) =

δ1iλxi(0)/ω,(13)

(i, j = 1, 2, i 6= j) where

Cw
i = {(M + aw

ii)ω
2 − δi1λ}/b

w
iiω, (14)

(i = 1, 2) and

Cw = aw
12

ω/bw
12

= aw
21

ω/bw
21

. (15)

The time varying velocities are now given by

uw
i (t) =

1

2π

∫ ∞

−∞

Uw
i (ω)e−iωtdω, (16)

where (13) determines that

Uw
1

(ω) = λω−1x1(0)(Cw
2

+ i)bw
22

/∆

Uw
2

(ω) = −λω−1x1(0)(Cw + i)bw
21

/∆

}

with

∆ = (Cw
1

+ i)(Cw
2

+ i)bw
11

bw
22
− (Cw + i)2bw

12
bw
21

(17)
Thus, the condition for there to be a motion
trapped mode at a frequency ω = ω0 is ∆ = 0
since the resulting pole on the real axis in
(16) gives rise, at large times, to a dominant
contribution proportional to e−iω0t.

From (17), the condition ∆ = 0 can be
split into its real imaginary parts to give two
real conditions to be satisfied for a motion
trapped mode. However, the general result

bw
11

bw
22

= bw
12

bw
21

, (and bw
12

= bw
21

)

can be proved for cylinder of arbitrary cross
section, and this reduces the complex condi-
tion ∆ = 0 into two much simpler real condi-
tions, namely

Cw
2

= Cw
1

= Cw.

First, we consider oscillations which are sym-
metric about the line bisecting the cylin-
ders. The wide-spacing approximation,
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Figure 2: Values of Ka and a/b for the funda-

mental mode at the crossing point.

(11) predicts a motion trapped modes for
Ka = 1.12593 and the sequence a/b =
0.60484, 0.22505, . . ., (n = 1, 2, . . .). A care-
ful computation of the exact method de-
scribed above confirms that there is indeed
motion trapped modes at values close to those
predicted by the wide-spacing approxima-
tion. The exact parameters are detected by
plotting curves in the (Ka, a/b)-plane along
which the two real quantities Cw

2
− Cw and

Cw
1
−Cw vanish. A motion trapped mode cor-

responds to the crossing of these two curves
(as illustrated in fig. 2).

The fundamental mode (a pumping mode),
furnishes exact values of Ka = 1.12170,
a/b = 0.60333. The next (n = 2) mode,
in which a single wavelength approximately
fits between the two cylinders, furnishes exact
values of Ka = 1.12590 and a/b = 0.22504,
extremely close to the wide-spacing values.

The first antisymmetric oscillation occurs
at Ka = 1.12612 and a/b = 0.32808 (wide-
spacing approximation gives a/b = 0.32804).
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