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Introduction 

We are concerned with the free surface behaviour between two closely spaced hulls, 
such as a floating LNG barge and a shuttle LNG tanker. Linear diffraction theory predicts that 
when regular waves are incident on such a configuration, very large resonant responses of the 
free surface may occur at certain frequencies. The phenomenon is similar to the resonances 
which may be excited in a moonpool (e.g. Molin, 2001). We refer to the present behaviour as 
“gap resonances”. Model tests have shown that the resonant responses in regular waves can 
indeed be considerably larger than the incident waves in some cases, though they may also be 
rather lower than predicted by linear potential theory. The reduced amplitudes measured in the 
tests are due, at least in part, to viscous effects such as shear on the side walls and separation 
at the corners, but the influence of these at full scale is not clear. Another consideration is that, 
in general, real waves at sea are not regular, and the build-up of resonant motions will depend 
on the nature of the incident wave packet. It is this aspect that we investigate here. 

 
Figure 1 Sketch of geometry 

 
Diffraction analysis in regular waves 

To characterise the problem, we consider two fixed rectangular boxes having relevant 
dimensions (each of length 280m, breadth 46m and draft 16.5m, see figure 1). The width of 
the gap between the hulls is 18m, corresponding to a case investigated in Sun et al (2008). We 
have used the quadratic boundary element program DIFFRACT to evaluate the free surface 
elevations in the vicinity of the two hulls and within the gap, for a range of wave frequencies 
in both head and beam seas. The body surfaces are represented by a mesh over one quadrant, 
having 1325 nodes (shown shaded in the figure), as we may use two planes of geometric 
symmetry in solving this problem. (The hydrodynamic behaviour of course has just one plane 
of symmetry). The program implements a scheme for eliminating the effects of irregular 
frequencies, which is essential in the analysis of problems such as this. Here we are 
particularly interested in the elevation in beam seas at the mid-length position on the inner side 
of the downwave hull. The resulting frequency response function F(ω) (real and imaginary 
parts and modulus) is shown in figure 2 (together with a set of fitted results discussed below). 
Over the range plotted, several peaks are observed in the plot of modulus, with corresponding 
rapid changes of phase of the complex amplitude, at the frequencies given in the first and third 
rows of table 1. The four peaks above 1.3 rad/s are seen to be high, and very narrow. 
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Figure 2 Frequency response function for elevation in gap:  ▬▬▬ DIFFRACT; ⎯⎯ fitted 
 
 

Mode m 1 3 5 7 9 11 13 15 
DIFFRACT  0.525 0.647 0.758 0.871 0.978 1.081 1.173 1.261 
Theory n=0 modes 0.516 0.651 0.774 0.891 1.001 1.103 1.197 1.285 
DIFFRACT 1.311 1.321 1.340 1.368     
Theory n=1 modes 1.313 1.323 1.343 1.371 1.407 1.449 1.494 1.542 

Table 1 Frequencies of gap resonances, computed from DIFFRACT and simple theory 
 

It is relatively easy to obtain an analytical solution of a simpler version of this problem 
(i.e. resonances in a gap of width B, between two plates of length L, thickness H, and of semi-
infinite width), based on the moonpool analysis of Molin (2001). The principal difference is to 
apply a Dirichlet condition at the ends of the gap instead of the Neumann condition required 
on all four walls of the moonpool. The matching condition at the bottom of the gap (H below 
the free surface) remains the same. The lowest resonances relevant to the present problem 
have odd integer numbers (m) of half sine waves along the length, and are constant across the 
gap (n=0). The next set involves the same longitudinal variations, and one half wave (n=1) 
transversely across the gap. The frequencies ωmn associated with these modes are given in the 
second row of table 1, along with the corresponding modal numbers m, n. Not only are these 
seen to be very close to the frequencies of peak responses as predicted by the full numerical 
diffraction analysis; it is also found that the free surface elevations predicted by DIFFRACT 
are very close to the sinusoidal modes of the analytical solution for both the n = 0 transverse 
modes and the half sinusoidal n = 1 modes (with minor discrepancies near the ends of the gap, 
as expected). The qualitative difference between n = 0 and n = 1 modes is evident in the 
frequency response function. It would appear that the analytical model provides an excellent 
simple tool for estimating the frequencies of peak responses in regular waves. 
 

In order to investigate possible viscous influences on responses of practical vessels, it 
is convenient to find a parametric fit to the frequency response function F(ω), and then to 
adjust the parameters which correspond to damping. We can do this using the idea that the 
resonant responses are linked to scattering frequencies at complex wavenumbers, kp (Eatock 
Taylor & Meylan 2007); at neighbouring (real) wavenumbers k the response is proportional to 
1/(k – kp). Considering deep water waves with k = ω2/g, we could therefore seek the response 
in the form  
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where ωp corresponds to the (real) resonant frequencies ωmn obtained above, and μp is some 
measure of dissipation. In the potential flow analysis, μp is associated with energy escaping 
from the gap in the form of waves radiated to infinity. Rather than using equation (1), 
however, it is more convenient to separate out the low frequency behaviour, writing instead: 
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In figure 2 the results obtained using equation (2) to fit the frequency response function over 
the range 0 < ω < 1.0 rad/s are compared with F(ω) evaluated by the diffraction analysis. A 
first approximation to the values of μp may be obtained from the half power bandwidth 
associated with each peak. These, however, then need to be adjusted because the observed 
bandwidth around some of the peaks is influenced by adjacent peaks. Special techniques can 
be used to improve the fit (e.g. using the Matlab” System Identification Toolbox).  
 
Behaviour in NewWave focused groups 

According to the standard NewWave theory (Tromans et  al. 1991), we may write the 
response time history, η(t), in the neighbourhood of a large wave crest in a random seastate 
characterised by a spectral density function S(ω), in the form  

.)()()( ωωωη ω deSFt ti∫
∞

∞−

=         (3) 

Taking F(ω) as the complex frequency response function given above, we may use this to 
obtain the time history of free surface elevation in the gap when a beam seas wave group 
encounters the closely spaced pair of hulls. If F(ω) is taken as unity, equation (1) also gives 
the time history of the incident wave. 
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Figure 3 Time histories of elevation at x = 0 in different spectra. 

 
Figure 3 compares time histories of the incident wave group, and the resulting 

response, for Pierson Moskowitz (PM) and Gaussian spectra with different peak periods. For 
clarity in these and subsequent figures the incident wave is shown shifted up by 2 units. The 
significant wave height is immaterial, because the incident group is in each case normalised to 
a unit peak elevation. The variance of the Gaussian function is chosen to fit the behaviour 
around the peak of a Jonswap spectrum. The discretised Fourier integral is evaluated using the 
FFT after padding with zeros to avoid aliasing. One notes the expected feature that a broader 
incident wave group is associated with the narrower banded Gaussian spectrum, though the 
behaviour of the response in the gap at x = 0 (see figure 1) is more complex. Figure 4 shows 
the response at different positions along the gap, in the same spectrum. These and other cases 
indicate significant magnification in the more extreme conditions (high Tp), and other effects, 
such as a form of beating at lower values of Tp (which may be linked to the disturbance 
propagating along the gap as in a waveguide). This is being investigated in further detail.  
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Figure 4 Elevation time histories in the same Gaussian spectrum at different positions along the gap 

 
The above results correspond to the potential flow model. One can investigate the 

effect of additional damping such as may be induced by viscosity, simply by changing the 
values of μp in the fitted model of the frequency response function. Calculations using this 
model for the Gaussian spectrum with  Tp = 13s are shown in figure 5, corresponding to the 
point x = 0. The first subplot shows the wave time history for the fitted function in figure 2, 
and therefore may be compared with the right hand plot in figure 3 based on the function 
evaluated by DIFFRACT. These are very similar, partly because the influence from responses 
above 1 rad/s (where we have not attempted to fit the frequency response function) is 
negligible for spectra with high peak periods. The other two subplots in figure 5 show the 
effects of doubling and quadrupling respectively all the damping coefficients μp in the fitted 
function. The magnifications of the peak incident elevation in the group are 2.75, 2.15 and 
1.60 respectively for the reference case and the two cases of increased damping.  
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Figure 5 Influence of damping on time histories of elevation at x = 0 in the same Gaussian spectrum 
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