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Summary

An extensive set of towing-tank experiments on the wave generation of three geosim catamaran
models was conducted in order to test the predictive ability of unsteady linearized wave theory.
It is demonstrated here that it is essentially impossible to achieve the steady-state wave pattern
in a typical towing tank in the region of the depth-critical speed. However, the theory can be
used with confidence to predict the incompletely developed wave system behind the model.

1 Introduction

Previous research on the wave generation by
ships has shown that excellent agreement can
be achieved between the experimental mea-
surements and the linearized theory. The ex-
ception to this is in the neighborhood of the
depth Froude number Fd = U/

√
gd equal to

unity, as demonstrated by Doctors (2007).

Here, we investigate the temporal generation
of the waves, considering motion of the vessel
from its start in the tank. The theory in the
deep-water case for this problem was devel-
oped by Çalişal (1977).

2 Unsteady Wave Elevation

The solution to the field equation and the
boundary conditions are obtained using a
two-dimensional Fourier transformation from
the x-y physical domain (see Figure 1(a)) to
the k-θ or kx-ky wave-number domain. The
Laplace transform is applied to the time.

The analysis is similar to that presented by
Lunde (1951), leading to his Equation (16.14).
In the current notation, the potential induced
by a point source Q(t) located at (0, 0, z′) is:

φ = φ1 + φ2 + φ3 , (1)

φ1 = −Q(t)

4πr
− Q(t)

4πr′′
, (2)

φ2 =
Q(t)

4π2

π∫

−π

dθ

∞∫

0

dk sech(kd) exp(−kd)

· cosh[k(d + z)] cosh[k(d + z′)]

· exp[ik(x cos θ + y sin θ)] , (3)

φ3 = − 1

4π2

t∫

0

Q(τ) dτ

π∫

−π

dθ

∞∫

0

dk

(gk/ω) sech2(kd) · sin[ω(t− τ)]

· exp{ik[s(t)− s(τ)] cos θ}
· cosh[k(d + z)] cosh[k(d + z′)]

· exp[ik(x cos θ + y sin θ)] . (4)

Here, s is the distance traveled and

r =
√

x2 + y2 + (z − z′)2 , (5)

r′′ =
√

x2 + y2 + (z + z′ + 2d)2 , (6)

ω =
√

gk tanh(kd) . (7)

The wave elevation ζ can be obtained from the
dynamic free-surface condition, using the po-
tential in Equation (1). The algebra involves
folding the wave-number integrals and using a
multiple image-source distribution, based on
thin-ship theory, in order to satisfy the tank-
sidewall condition. The final result is:

ζ(x, y, t) = − i

π2

t∫

0

U(τ) dτ

∞∫

0

dkx

∞∑

i=0

ε ∆ky kx

· cos[ω(t− τ)]

· exp{ikx[x + s(t)− s(τ)]}
· cos(kyy) · (U − iV) , (8)



Figure 1: Definition of the Problem Figure 1: Definition of the Problem
(a) Experimental Setup (b) Demihull with 80% Beam

in which

kx + iky = k exp(iθ) , (9)

ε =

{
1
2

for i = 0
1 for i ≥ 1

, (10)

ky = i∆ky , (11)

∆ky = 2π/w . (12)

Finally, the finite-depth wave functions in
Equation (8) are given by the formulas

U =
P+ + exp(−2kd)P−

1 + exp(−2kd)
, (13)

V =
Q+ + exp(−2kd)Q−

1 + exp(−2kd)
, (14)

in which the Michell (1898) deep-water func-
tions depend on the local beam b(x, z):

P± + iQ± =
∫

S0

b(x, z) exp(ikxx± kz)

· cos(kyy) dS . (15)

3 Steady-State Wave Elevation

The case of steady motion can be obtained
from Equation (8) by setting the velocity U
to be constant and taking the limit for large
time. The result is:

ζ(x, y) =
1

π2

∞∫

0

dkx

∞∑

i=0

ε ∆ky k2
x exp(ikxx)

· cos(kyy) · (U − iV)/f

− i

π

∞∑

i=0

ε ∆ky kkx exp(ikxx)

· cos(kyy) · (U − iV)/
df

dk
, (16)

where the dispersion relationship and its
derivative are

f = k2 − kk0 tanh(kd)− k2
y , (17)

df

dk
= 2k − k0 tanh(kd)− kk0d sech2(kd) ,

(18)

and the fundamental circular wave number is

k0 = g/U2 . (19)

4 Root-Mean-Square Wave Elevation

Figure 1(b) is a pictorial view of the thinnest
test model, referred to as the 80%-beam
model. This model has a transom stern. It
is suitable as a high-speed vessel.

Figure 2(a) is a plot of the dimensionless
root-mean-square wave elevation measured
by the five wave probes, located at y/L =
0.6667(0.3333)2.0000, for wave cuts over the
range −7 ≤ x/L ≤ 0 for the vessel with
a demibeam-to-length ratio B1/L = 0.0742,
and a dimensionless demihull spacing s/L =



Figure 2: Steady and Unsteady Theory Figure 2: Steady and Unsteady Theory
(a) B1/L = 0.0742 and s/L = 0.2 (b) B1/L = 0.0742 and s/L = 0.3

Figure 3: Location of Wave Probe Figure 3: Location of Wave Probe
(a) B1/L = 0.0742 and s/L = 0.2 (b) B1/L = 0.0742 and s/L = 0.3

0.2. The dimensionless carriage acceleration
was U̇/g = 0.066. Five sets of data are plotted
as a function of the Froude number F . The
experiments are shown as symbols and indi-
cated as “Exp”. The first theoretical curve,
referred to as “Real” is taken from Doctors
(2007) and assumes typical real water prop-
erties. It is a steady-state calculation using
the downstream far-field approximation and
is the real-fluid equivalent of double the sec-
ond term in Equation (16). One can see the
generally excellent agreement, except in the
troublesome region near the critical speed.

The third curve, indicated by “Trans”, is the
current inviscid unsteady calculation in Equa-

tion (8), with the wave probe set at the correct
experiment position xW /L = 40. However,
the unsteady theory has only been applied to
the transverse wave whereas the traditional
steady theory has been applied to all the
other wave components. Excellent agreement
is now achieved in the critical-speed range.
The fourth curve, indicated by “Steady” is
the inviscid theory from Equation (16), which
very closely coincides with that indicated by
“Real”, except at very low speeds. It is also
almost identical to the last curve indicated
by “Field”, which was computed as a down-
stream far-field wave system. Figure 2(b) is
similar, but is for the case of a greater demi-
hull spacing s/L = 0.3.



Figure 4: Growth of Wave Profile Figure 4: Growth of Wave Profile
(a) F = 0.7, Fd = 0.9899 and y/L = 0.6667 (b) F = 0.7, Fd = 0.9899 and y/L = 1.3333

Figure 3(a) corresponds to Figure 2(a). It
shows the true unsteady calculations for four
different assumed locations xW /L of the wave
probes. These curves are indicated as “Unst”.
The general effect is that the wave magni-
tude increases with this parameter. The first
and sixth curves have been repeated from Fig-
ure 2(a) for the purpose of comparison. Fig-
ure 3(b) applies to the greater spacing.

5 Wave-Elevation Curves

Wave profiles are presented in the two parts of
Figure 4, which is for the challenging case of
F = 0.7 or Fd = 0.9899. For a close wave
cut y/L = 0.6667 in Figure 4(a), one sees
the excellent agreement between the current
unsteady calculation (fourth curve) and the
experiments, both for xW /L = 40, at least
back to x/L = −2. The traditional steady
calculation (fifth curve) is a very poor predic-
tor. Figure 4(b), which is for the further cut
y/L = 1.333, demonstrates excellent agree-
ment between the unsteady prediction and
the experiments for xW /L = 40 over the en-
tire length of the wave cut. Again, the steady
prediction is seen to be very poor in this trans-
critical speed range.

6 Concluding Comments

We have demonstrated theoretically that un-
steady phenomena are such as to reduce the

otherwise large theoretical wave elevations in
the transcritical region. We have also shown
that the unsteady effect can be traced almost
entirely to the transverse wave component.

The tests were performed in the Towing Tank
at the Australian Maritime College (AMC)
under the supervision of Mr Richard Young
and Mr Liam Honeychurch.
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