Scaling of wave-impact pressuresin trapped air pockets
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1 Introduction

The determination of pressures generated by violent wapadis is an important task
in the design of coastal and offshore structures. Bagnd@84)Lfound that the highest
pressures are often associated with entrapment of a smpbeket which is compressed
during the impact. Improved understanding of the assatistale effects is needed, as
the design of many structures is based, at least in part, afl-soale hydraulic model
tests and compression of air does not follow the Froude law.

The complexity of the pressure variation within wave imgatas been highlighted
by recent research which combined field and laboratory measnts at different scales
(Bullock et al., 2007) with numerical modelling (Bredmodek, 2004; Peregrine et al.,
2006). Figure 1 (left) shows an example of a humerical coatpart for a wave which
traps an air pocket. The numerical model solves the Euleatemns for a mixture of water
and ideal gas.

In validating the outcome of such investigations, one cderobenefit from a com-
parison to a simpler test problem with known solution. Tkighe topic of the present
paper. The study builds on the work of Bagnold (1939), whooohiced a 1D piston
model for analysing wave impacts with trapped air pocketgsiWasu (1966), who de-
rived an exact solution for the associated maximum poclesgure and Lundgren (1969)
who discussed the scaling implication of this result. Heesextend the derivation to the
2D and 3D axisymmetric cases. The 1D, 2D and 3D scaling laosgge insight into the
physics of compressed air pockets and are closely relathts ehables a single curve
to be presented, for scaling impact pressures on the basreasured pressures alone.
Results from numerical computations of real wave impaatsimigood agreement with
this curve.
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Figure 1: Left: Numerical example of the density and presdigids in a wave impact with trapped air
pocket. Right: Definition sketch for 1D piston model.
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2 Scaling analysis

Consider the 1D piston model for a wave impact as sketchedyunefil (right). An
incompressible slug or ‘piston’ of water of densjiycompresses a pocket of air against



a rigid wall atz = 0. Initially, the piston is travelling towards the wall witlelocity «,
with its front atz = z, its rear atr = ax, and atmospheric pressysg= 10° Pa on both
sides.

We assume the air pressure to be uniform and the compressiba adiabatic in
accordance with the ideal gas law. The pressure in the p&ketn

p=m(2) (1)
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wherey = 1.4 is the exponent of adiabatic compression. The work doneypiemwidth
and height, for moving the piston to the position of maximwmeressiong i, is
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which by utilising (1) can be expressed in terms of the maxmpuessuremax
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This work is equal to the initial kinetic energy of each unitlth and height of the piston,
Fin = (1/2)p(a — 1)zou?. Combining these two results yields the pressure law
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Equation (4) is in agreement with the relationship deriveditsuyasu (1966). In Lund-
gren (1969), the right hand side is expressed in terms of adpeseave height. In the
present setting, specific values®f., anda can be inserted in order to obtain the maxi-
mum pressure.

The implication of (4) with respect to scaling can be illaséd by means of an exam-
ple. Forp = 1000 kg/m?, uy = 4 m/s anda = 1.4, the right hand side of (4) takes the
valuec = 1.3 - 1072, and a maximum pressure pfp, = 1.4 can be found by iteration.
This corresponds to a gauge pressurépof py)/po = 0.4. In the context of wave im-
pacts, the wave motion itself is Froude scalable. Thus faeargetric scale factor of,
the Froude scaled right hand side of (4) will take the valtieasu, ~ S'/? Froude-wise.

In figure 2, the maximum gauge pressure is plotted again$or scaling factors in the
rangesS € [1;4096] (green curve).

The above example may be repeated using another set of Yatyes,, anda. As a
result of this, the right hand side of (4) can be writtergswherec, is a new constant. In
the double logarithmic plot this will produce a curve ideatito the one shown in figure
2, apart from a horisontal shift. Such a shift, however, doasaffect the slope of the
curve, which is still a unique function @p — po)/po-

3 2D and 3D axisymmetric pockets

Although the 1D scaling law is instructive, its practicaesance is not entirely obvious.
Wave impacts are seldomly 1D. Greater insight can be acthieyeleriving the scaling
laws for the 2D and 3D axisymmetric equivalents to the 1DeystFigure 3 shows the
definition sketches. The 2D case describes a slug of wateortgtant volume that is
compressing a pocket of air in a wedge shaped cavity. Thariteteous position of the
front of the piston is denotedand the instantaneous pressure of the trapped air is

p= po(To/T)zw- (5)
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Figure 2: Maximum pressures of numerical computations afevmpacts with trapped air pockets. Com-
parison to the pressure law (4).

The initial velocity field isu(r) = wuoro/r giving the following initial kinetic energy per
unit with and angle

arg 2
Eiin = / P <_u(;r0> rdr = pudrg In o (6)

0

As before, this energy equals the work for moving the slug afewto the position of

maximum compression
Tm r 2y
W = / Do [(70) — 1] rd(—r). (7)

The final result, after combining (6), (7) and (5) is
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The 3D case can be analysed by similar means to obtain
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We now see that the 1D, 2D and 3D pressure laws (4), (8) anca{®) identical left hand
sides. Moreover, their right hand sides all scale propodiiy to the geometric scaling
factor S, when the problem dependent parameters are Froude scavededliently, all
three right hand sides can be written@S, wherec; is a problem dependent constant.
This means that for any choice of parameter valueg,{,), or dimensions (1D, 2D or
3D), alog-log plot of pmax—p0 ) / po @gainst the right-hand side of the relevant pressure law
will produce a curve identical to the green curve in figurexZept for a horisontal shift
caused by the different values @f This shift, however, has no effect on the relationship
between the slope of the curve and the pres§urepy)/po.



Figure 3: Definition sketches for 2D and 3D axisymmetric aickets.

4 Discussion

The relevance of the piston models to the more complex flowsdan waves has been
explored by means of numerical computations. The red csosséigure 2 show the
maximum pressures within the air pocket when the computatidigure 1 (left) was run
at different scales. The numerical pressures show goo@ gt with the scaling curve.

The unique relationship between pressure and the slopeeaiciling curve implies
that any measured pressure can be scaled up or down by Ingeztithe corresponding
valuecS on the horizontal axis, 2) increasing or decreasing theavatuS by the desired
scale factor and 3) using the new value-§fto read a scaled pressure from the curve.

For small scale factors, the local slope of the scaling cpregides a simple approxi-
mate scaling law. Inspection of (4) reveals that asympdt$ic(p — po) /po ~ S0~ =
S35, This asymptotic relationship is plotted as a red line inrég®. This relation, how-
ever, is only applicable for pressures exceeding 1000 MiRhisathus not relevant in the
context of wave impacts. Another line, representing- py)/po ~ S, which corresponds
to Froude scaling of the pocket gauge pressures, is plottdteifigure too. We see that
the pressure curve takes this slopé&at py) /po ~ 3, i.e. forp—p, ~ 300 kPa. Hence the
scaling of pressures of this size is well approximated byFtioeide law. Most small scale
laboratory pressures, however, are well below 300 kPa, lser@fiore must be expected
to scale less than linearly with the scaling factor, if agsed with a trapped air pocket.
This may help to explain why Froude scaled laboratory pressare often believed to be
unrealistically high.
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