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1 Introduction

The determination of pressures generated by violent wave impacts is an important task
in the design of coastal and offshore structures. Bagnold (1939) found that the highest
pressures are often associated with entrapment of a small air pocket which is compressed
during the impact. Improved understanding of the associated scale effects is needed, as
the design of many structures is based, at least in part, on small-scale hydraulic model
tests and compression of air does not follow the Froude law.

The complexity of the pressure variation within wave impacts has been highlighted
by recent research which combined field and laboratory measurements at different scales
(Bullock et al., 2007) with numerical modelling (Bredmose et al., 2004; Peregrine et al.,
2006). Figure 1 (left) shows an example of a numerical computation for a wave which
traps an air pocket. The numerical model solves the Euler equations for a mixture of water
and ideal gas.

In validating the outcome of such investigations, one can often benefit from a com-
parison to a simpler test problem with known solution. This is the topic of the present
paper. The study builds on the work of Bagnold (1939), who introduced a 1D piston
model for analysing wave impacts with trapped air pockets, Mitsuyasu (1966), who de-
rived an exact solution for the associated maximum pocket pressure and Lundgren (1969)
who discussed the scaling implication of this result. Here we extend the derivation to the
2D and 3D axisymmetric cases. The 1D, 2D and 3D scaling laws provide insight into the
physics of compressed air pockets and are closely related. This enables a single curve
to be presented, for scaling impact pressures on the basis ofmeasured pressures alone.
Results from numerical computations of real wave impacts are in good agreement with
this curve.
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Figure 1: Left: Numerical example of the density and pressure fields in a wave impact with trapped air
pocket. Right: Definition sketch for 1D piston model.

2 Scaling analysis

Consider the 1D piston model for a wave impact as sketched in figure 1 (right). An
incompressible slug or ‘piston’ of water of densityρ compresses a pocket of air against



a rigid wall atx = 0. Initially, the piston is travelling towards the wall with velocityu0,
with its front atx = x0, its rear atx = αx0 and atmospheric pressurep0 = 105 Pa on both
sides.

We assume the air pressure to be uniform and the compression to be adiabatic in
accordance with the ideal gas law. The pressure in the pocketis then
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(1)

whereγ = 1.4 is the exponent of adiabatic compression. The work done, perunit width
and height, for moving the piston to the position of maximum compression,xmin, is

W =

∫ xmin

x0

p0

(x0

x

)γ

− p0 d(−x) =
p0x0

γ − 1

[

(

xmin

x0

)γ−1

+ (γ − 1)
xmin

x0
− γ

]

(2)

which by utilising (1) can be expressed in terms of the maximum pressurepmax
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This work is equal to the initial kinetic energy of each unit width and height of the piston,
Ekin = (1/2)ρ(α − 1)x0u

2
0. Combining these two results yields the pressure law
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Equation (4) is in agreement with the relationship derived by Mitsuyasu (1966). In Lund-
gren (1969), the right hand side is expressed in terms of a pseudo wave height. In the
present setting, specific values ofρ, u0 andα can be inserted in order to obtain the maxi-
mum pressure.

The implication of (4) with respect to scaling can be illustrated by means of an exam-
ple. Forρ = 1000 kg/m3, u0 = 4 m/s andα = 1.4, the right hand side of (4) takes the
valuec = 1.3 · 10−2, and a maximum pressure ofp/p0 = 1.4 can be found by iteration.
This corresponds to a gauge pressure of(p − p0)/p0 = 0.4. In the context of wave im-
pacts, the wave motion itself is Froude scalable. Thus for a geometric scale factor ofS,
the Froude scaled right hand side of (4) will take the valuecS, asu0 ∼ S1/2 Froude-wise.
In figure 2, the maximum gauge pressure is plotted againstcS for scaling factors in the
rangeS ∈ [1; 4096] (green curve).

The above example may be repeated using another set of valuesfor ρ, u0 andα. As a
result of this, the right hand side of (4) can be written asc2S wherec2 is a new constant. In
the double logarithmic plot this will produce a curve identical to the one shown in figure
2, apart from a horisontal shift. Such a shift, however, doesnot affect the slope of the
curve, which is still a unique function of(p − p0)/p0.

3 2D and 3D axisymmetric pockets

Although the 1D scaling law is instructive, its practical relevance is not entirely obvious.
Wave impacts are seldomly 1D. Greater insight can be achieved by deriving the scaling
laws for the 2D and 3D axisymmetric equivalents to the 1D system. Figure 3 shows the
definition sketches. The 2D case describes a slug of water of constant volume that is
compressing a pocket of air in a wedge shaped cavity. The instantaneous position of the
front of the piston is denotedr and the instantaneous pressure of the trapped air is

p = p0(r0/r)
2γ. (5)
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Figure 2: Maximum pressures of numerical computations of wave impacts with trapped air pockets. Com-
parison to the pressure law (4).

The initial velocity field isu(r) = u0r0/r giving the following initial kinetic energy per
unit with and angle
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As before, this energy equals the work for moving the slug of water to the position of
maximum compression
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The final result, after combining (6), (7) and (5) is
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The 3D case can be analysed by similar means to obtain
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We now see that the 1D, 2D and 3D pressure laws (4), (8) and (9) have identical left hand
sides. Moreover, their right hand sides all scale proportionally to the geometric scaling
factorS, when the problem dependent parameters are Froude scaled. Consequently, all
three right hand sides can be written asciS, whereci is a problem dependent constant.
This means that for any choice of parameter values (α,ρ,u0), or dimensions (1D, 2D or
3D), a log-log plot of(pmax−p0)/p0 against the right-hand side of the relevant pressure law
will produce a curve identical to the green curve in figure 2, except for a horisontal shift
caused by the different values ofci. This shift, however, has no effect on the relationship
between the slope of the curve and the pressure(p − p0)/p0.
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Figure 3: Definition sketches for 2D and 3D axisymmetric air pockets.

4 Discussion

The relevance of the piston models to the more complex flows found in waves has been
explored by means of numerical computations. The red crosses in figure 2 show the
maximum pressures within the air pocket when the computation of figure 1 (left) was run
at different scales. The numerical pressures show good agreement with the scaling curve.

The unique relationship between pressure and the slope of the scaling curve implies
that any measured pressure can be scaled up or down by 1) reading off the corresponding
valuecS on the horizontal axis, 2) increasing or decreasing the value ofcS by the desired
scale factor and 3) using the new value ofcS to read a scaled pressure from the curve.

For small scale factors, the local slope of the scaling curveprovides a simple approxi-
mate scaling law. Inspection of (4) reveals that asymptotically, (p− p0)/p0 ∼ Sγ/(γ−1) =
S3.5. This asymptotic relationship is plotted as a red line in figure 2. This relation, how-
ever, is only applicable for pressures exceeding 1000 MPa, and is thus not relevant in the
context of wave impacts. Another line, representing(p− p0)/p0 ∼ S, which corresponds
to Froude scaling of the pocket gauge pressures, is plotted in the figure too. We see that
the pressure curve takes this slope at(p−p0)/p0 ≈ 3, i.e. forp−p0 ≈ 300 kPa. Hence the
scaling of pressures of this size is well approximated by theFroude law. Most small scale
laboratory pressures, however, are well below 300 kPa, and therefore must be expected
to scale less than linearly with the scaling factor, if associated with a trapped air pocket.
This may help to explain why Froude scaled laboratory pressures are often believed to be
unrealistically high.
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