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The aim of this study is to develop an efficient deterministic prediction model for irregular wave fields based on the 
exploitation of wave elevation time series, given by one or more probes. We use the High-Order-Spectral model (HOS) to 
simulate the wave field evolution numerically, in order to take the non-linear effects up to a desired order into account. 

In this paper, we report on the development of an effective reconstruction scheme, for two dimensional wave fields and 
using one wave record, that allows us to get proper initial conditions for numerical simulations and nonlinear wave fields 
forecast. 
 
 
1. Introduction 
 

The phase averaged wave spectrum models, such as 
the well known Wavewatch model, have been the only 
practical prediction tools available since now. Despite their 
progress and success, the development of these so-called 
third generation models is limited by the inherent 
homogeneous and stationary assumptions, the linear 
transportation equation and the approximate source 
formulations for all physical processes. They are not able to 
predict deterministically the wave field evolution, and only 
statistical data representative of the sea state are available. 
But with the recent advances in computing technologies, the 
phase-resolved simulations of non-linear wave dynamics are 
becoming a feasible alternative to the spectral models for 
short term prediction. The objective of our work is therefore 
to develop a new deterministic prediction method, based on 
the use of the High Order Spectral (HOS) method, which we 
have been developing in the past few years, both for 
applications related to wave tank problems, and for non-
linear simulations of sea states in unbounded domains (see 
e.g. Ducrozet et al [2]). Our approach for the deterministic 
prediction is very similar to the one reported in Yue et al 
[10] and Wu [12], from which this work is partially 
inspired. 

A theoretical study was first conducted to provide 
the validity of the reconstructed wave field and its future 
predictability. We defined a reconstruction and prediction 
domain and we examined the effect various physical factors 
on the region. Easy ways to improve the zone were found.  

One of the main key issues in developing our new 
prediction model was then to accurately reconstruct the 
initial wave field from the free surface elevation measured 
at one or several probes. High order simulation could only 
then been applied to predict the ocean wave field with 
optimal accuracy. For this, we used a multi-level iterative 
wave reconstruction process based on the free wave 
components of one probe record, with analytic solutions for 
first and second order reconstruction, and High-Order-
Spectral non-linear wave model for upper orders. An 
optimization process was then applied to adjust the free 
wave components until the reconstruction error was 
minimized.  

Finally, the wave reconstruction was tested with 
synthetic data obtained by a fully non-linear HOS 

simulation. Good agreement was found for second order 2D 
case reconstruction, for different wave steepness. However, 
for high steepness, it showed that high-order effects 
inclusion in wave reconstruction is of significance.  
 
2. Predictable domain 

 
Reconstruction and prediction can only be 

considered in a specific time-space zone that depends on the 
wave conditions and the number of probes used [12]. For a 
linear ocean wave field with no ambient current and fixed 
probes, we show that the predictable region only depends on 
the measurement period T, the slowest and fastest group 
velocities of the wave components crossing the probe, and 
the spreading angle range for a multidirectional wave field. 
When considering real waves, as the nonlinearities modify 
the group velocity, the predictable domain changes, 
according to the interactions between all the wave 
components in the field. Nonlinear interactions turn out to 
increase the domain. 

 

 
Figure 1 : Predictable zone and error at t >T for a 3D wave 

field, based on a measurement at the origin, during a period of 
T=300s 

 
The effect of probe motion, ambient current and 

finite water depth on the predictable domain have also been 
examined respectively for a unidirectional field. We found 
that probes moving with constant speed against the waves 
can significantly increase the domain, which suggests a 
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method to improve predictability for ship-mounted sensors. 
A following current also improves the predictability, 
whereas an opposite current decreases it. We noticed that 
the effect of finite water depth on the predictable zone is not 
monotonous and depends on the frequency band of the wave 
spectrum. 

Finally, we studied the effect of combining probe 
records on the domain. We have shown that the combined 
zone is much larger that the sum of individual predictable 
regions based on the same probe. This suggests another way 
to improve predictability easily, as multiple probes are often 
used when measuring multidirectional seas. 

 

 
Figure 2 : Association of three probes located at the black 
points; individual (green) and combined (red) predictable 

regions at t=T for a 3D wave field 
 
 
3. High Order Spectral method 
  

For medium wave steepness, the non-linear 
interactions play an important role in the wave dynamics 
and cannot be ignored in the wave field reconstruction and 
prediction. Rather than employing an analytic solution, 
which is very complex and costly to obtain, we choose to 
apply a very powerful numerical method for calculating the 
wave field, the HOS (High Order Spectral) method. 

The HOS model is a pseudo-spectral method that 
follows Zakharov’s equations. It takes N modes into 
account and their non-linear interactions up to an arbitrary 
order M in wave steepness. The method has spectral 
convergence with respect to N and M and the use of Fast 
Fourier Transforms reduces the computational cost to 
MNlog(N) at each time step. 

The governing equations for the method are 
Laplace’s equation for the velocity potential and the fully 
non-linear free surface boundary conditions written in 
surface quantities, the single-valued surface elevation 
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The two unknowns are expressed at collocation 
points of a periodic domain and further time-marched once 
the vertical velocity has been obtained through the solution 
of a Dirichlet problem for the potential. The latter is solved 
by the HOS expansion of the potential in orders of the wave 
elevation in parallel with the order consistent formulation of 
West et al [11]. 

Since the solution of the stated non-linear boundary 
problem is totally determined by the initial conditions for 
the surface elevation and the surface potential, one key issue 
of wave reconstruction and forecasting is though to 
determine )0,( =txsφ  and )0,( =txη  that satisfy 

),(~),( txtx probeprobe ηη =  for [ ]Tt ,0∈ , where ),(~ tx probeη  is 
the probe record and T the measurement period. 

 
 

4. Reconstruction of a unidirectional wave field 
based on a single probe record 

 
4.1. Outlines 

The first step in wave reconstruction is to determine 
the frequency-direction spectrum of the wave field from the 
records. For the two-dimensional case, this can be easily 
done using a Fourier transform. The prediction region can 
then be evaluated and the reconstruction process may begin. 

As suggested by Yue et al [10] and Wu [12], we use 
an iterative optimization process for reconstruction. It starts 
with a linear analytic model and increases the non-linear 
order gradually. This allows us to study wave fields with 
various steepness without employing large computational 
efforts when not needed: for small wave steepness, the 
procedure may stop at a low order avoiding costly 
simulations associated with high-orders of nonlinearity.  

The reconstruction is based on the optimization of 
the record free wave components. For the second order 
reconstruction, we use a conventional analytic mode 
coupling method to calculate the wave-wave interactions 
(see Dalzell [1]) and the iterative process of Duncan and 
Drake [3] to decouple non-linear effects from the free wave 
components.  

For orders up to two, the initial wave surface 
elevation and surface potential are calculated from the free 
wave components obtained at the previous order. The wave 
field is then reconstructed and its non-linear evolution is 
simulated with the HOS method during the measurement 
period, so that we obtain the reconstructed wave records. An 
optimization procedure is finally applied to adjust the free 
wave components until the reconstruction error is 
minimized in the reconstruction domain.  

If the accuracy is good enough, the process ends, 
otherwise the order of nonlinearity is increased by one and 
the new model is applied to the reconstructed wave field. 

After the wave field is reconstructed, it can be 
forecasted by using either an analytic wave solution 
calculated from the free wave components directly, or a 
HOS simulation with the reconstructed field at t=T as initial 
condition. Note that only the wave field within the 
predictable region can be deterministically forecasted.   

 
4.2. Reconstruction error 

The wave field reconstruction error is defined by the 
following formula, where Np is the number of probes used 
(Np = 1 in our case) and W(xprobe,t) a weighting function that 



 3

allows us better to capture the features at wave peaks in 
wave reconstruction.  
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Thus the reconstruction becomes an optimization 
process to minimize ε and have the best accuracy for the 
reconstructed wave field. 
 
4.3. Second order reconstruction 

The surface elevation at probe position is assumed to 
comprise the sum of first and second order components: 

 

)()()( )2()1( tttprobe ηηη +=  
 

This decomposition cannot be completed directly as 
the free wave components are required to evaluate the 
second order interactions, but are accurately obtained if they 
previously have been decoupled from the non-linear effects. 
We thus apply Duncan and Drake’s cascade procedure to 
get the free wave components, where the second order 
elevation at step q+1 is calculated from the decoupled first 
order components at step q by a mode coupling method. The 
decomposition stops when convergence is obtained.  

 

)(

)(~

)1()2()2(
1

)2(
1

)1(
1

qq

q
probe

q t

ηηη

ηηη

=

−=

+

++  

 

Special attention had to be paid at high frequencies 
(>2rad/s) where a numerical instability problem occurs for 
medium and high steepness. As the measured amplitudes 
get very small at high frequencies, an unrealistic build up of 
first and second order components takes place if the 
procedure is used without any constraint, which makes the 
calculations diverge.  

As suggested by Duncan and Drake, we tried to 
control this instability by setting a cut-off frequency ωc 
above which the first order amplitudes are set to zero and 
thus the second order amplitudes are set to the measured 
amplitudes. Duncan and Drake’s solution consists in 
cutting-off at the frequency where the second order 
amplitude modulus exceeds the measured amplitude 
modulus, rather than choosing an arbitrary ωc. 

 

 
Figure 3 : Stability problem in Duncan and Drake’s 

procedure; evolution of the reconstruction error for a 2D wave 
field during the process for various cut-off frequencies 

 

Because of the roughness of our amplitudes spectra 
(due to the frequency discretization), we couldn’t manage to 
determine ωc this way. Moreover, we found that a very 
small change in ωc could have a significant influence on the 
quality of the reconstructed record (see Figure 3). 
Therefore, rather than trying every suitable frequency as ωc, 
which would have been very costly, we chose to use an 
optimization process to determine the cut-off frequency that 
minimizes the reconstruction error at probe position.  
 
4.4. Validation of second order reconstruction at 

t=T/2 
The wave reconstruction model was tested with 

synthetic data obtained by fully non-linear HOS simulation. 
We chose to use Tanaka’s procedure [9] to create a wave 
field from a 2D-JONSWAP spectrum, and simulated its 
evolution with the HOS code up to a desired order of 
nonlinearity. 

Different wave steepness were studied. On Figure 4, 
we put in relation the reconstruction error ε evaluated at 
probe position to the error on the reconstructed surface 
elevation and potential on the entire reconstruction zone. 
The latter was evaluated as the discrepancy to the synthetic 
data at each point of the discretized space domain and 
averaged. 

 

 
Figure 4 : 1st and 2nd order reconstructions for 2D wave fields 

with various steepness, a) Reconstruction error ε after Duncan 
& Drake’s decomposition, b) Error at t= T/2 between 
theoretical and reconstructed surface elevations in the 

reconstruction zone  
 

Good agreement was found for wave fields with 
steepness lower than 3%. We note a significative 
improvement of the peaks reconstruction compared to the 
linear solution. For upper steepness, high-order effects 
become too important and the second order solution doesn’t 
take all nonlinearities into account any more; the linear 
solution seams even better than the second order one. 

 

 
Figure 5 : 1st and 2nd order reconstruction at t=T/2 for a 2% 

steepness wave field, from one probe measurement at 
x=2000m; black lines delimit the reconstruction zone 

 

ηlin ηsecond 

a) 

b)

1st order 2nd order measure
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Note that we also reconstructed the surface potential 
which is needed as initial condition by the HOS code for 
second order wave prediction and upper orders 
reconstruction.  
 
4.5. Optimization of free wave components for high 

order probe record reconstruction 
As we do not have any explicit form for the wave 

solution, we have to simulate the wave field from 0 to T 
with the HOS method to get the probe record each time the 
reconstruction error is evaluated. This is very costly, so we 
concentrated on very efficient optimization methods. 

We first tried direct search schemes, also called 
derivative free methods because they don’t use the 
derivatives of the objective by the optimization variables to 
progress. Therefore, no explicit expression for the error in 
terms of the free wave components is required.  

The first procedure tested was the Simplex method of 
Nelder and Mead [4] which showed to be very slow. We 
then explored the set of directional approaches such as 
Rosenbrock’s [7], Swann’s [8] or Powell’s [6] methods. 
Swann’s and Powell’s optimization processes turned out to 
be useless as we couldn’t bracket the minimum before the 
maximum displacement authorized was reached for the 
optimization variables. As a matter of fact, it’s necessary to 
limit the possible values for the free surface elevation 
components if we want the spectra to remain physical. For 
the Rosenbrock’s method, we used Palmer’s improvement 
for direction’s updating in order to avoid colinearity [5]. 

Figure 6 shows the convergence of both Simplex and 
Rosenbrock’s methods for a third order reconstruction 
scheme. The latter appears to be the most efficient. 

We also considered derivatives-based optimization 
methods, such as the Conjugate Gradient method and the 
Quasi-Newton method. Unfortunately those methods induce 
tremendous computational efforts as they require as many 
objective evaluations as optimization variables used (which 
means as many HOS simulations) for any gradient 
evaluation (with a decentred finite difference method). 
Other methods for the gradient calculation exist, like the 
adjoint method, but they are very complex and have not 
been implemented yet. Therefore we restricted our study to 
the procedures presented before, based on the function 
evaluation rather than its gradient. 

 
 

Figure 6 : Simplex and Rosenbrock’s optimization results for 
the third order reconstruction of a 0.5% 2D wave field 

 
 

Results presented in Figure 6 mainly aim at selecting 
the most appropriate optimization algorithm for our 
application. The optimization procedure based on HOS 
simulations is still under development. Especially, one may 
notice on the latter figure that the reconstruction error 
obtained with Rosenbrock’s method is still very important 
and much bigger than the one obtained with second order 
Duncan and Drake’s algorithm. We are presently working 
on this. 
 
 
5. Conclusion 
 

In this paper, we have presented significant results 
on the development of an efficient reconstruction method 
for irregular non-linear wave-fields using one probe wave 
record of limited duration. Second order reconstruction has 
been validated with several synthetic data and further 
experimental validations in our wave basin are planned. 
Regarding higher orders reconstruction, we are still 
improving our optimization procedures.  

At least, the scheme is also being extended to 
directional seas, and will take benefit from the recent 
parallelization of the code.  
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