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1.Introduction 

Recently, with the reduction of fishery products, more and more effort and fund are invested to the 

aquaculture in the bay or coastal area. Fishes are fed up in fish cages with various shapes. These fish 

cages are made of porous materials to allow fresh seawater to flow in and out. Generally, the sea 

condition at the fish farm is quite rough, it necessary to investigate the wave loads acting the cages. 

In the present work, a porous circular-cylindrical cage semi-submerged in waves is studied. The problem 

is solved semi-analytically by means of the eigen-function expansion. The water domain is divided into 

two regions and different eigen-functions are applied. In the interior region, it is equivalent to the problem 

of two porous disks, which leads to a complicated transcendental equation for the eigen values and eigen 

functions in the interior region. 

2. Formulation of the problem 

A circular-cylindrical fish cage with radius a is fixed in a water of depth h. A polar coordinate system (r, θ, 

z) is adopted to describe the problem. The origin is put on the still wafer level. The axis of the fish cage is

taken as the z-axis, pointing upward (see Fig.1). 

The upper plate of the cylindrical cage is located 

at z=- d1 while the lower one is situated at z = - d2 

(1 < d1 < d2 <h). The height of the cage d = d2 - d1. 

It is assumed that the fluid is inviscid and 

incompressible, and the flow is irrotational. There 

exists a velocity potential, which can be expressed 

as Φ(x,t) = Re{φ(x)e-iω t} when the fluid motion is 

harmonic. Under the assumption of linear wave 

theory, the velocity potential φ(x) satisfies the 

following governing equation as well as boundary 

conditions on the free surface, sea bed and the 

Sommerfeld far field: 

 

 z
 

 

 

 

 

 

 

 

 

 

 

( ) ( )
0)(lim)0(0

000

0

2

−φ−∂φ∂==νφ−∂φ∂

−==∂φ∂<<−=φ∇

ikrrzz

hzzzh

∞→r

 (1) 

ｙ

o
d１ 

d2
hΩ１  

Ω２ 2a

ｒ
ｘθ

Fig.1 Definition of polar coordinate system 

and division of fluid domain 
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Here, ν=ω2/g with gas the gravity acceleration. The frequency and wave number of incident waves are 

denoted by ω and k0 respectively, which satisfies the dispersion relation ν = k0tanh k0h   

The fish cage is made of porous materials to let the sea water flow through it. Following the fine-pore 

assumption made by Chwang(1983) and used in many other works, the normal velocity is continuous 

through the porous boundary and is proportional to the pressure difference between two sides of the 

boundary. Hence, the boundary condition on the body surface may be written as: 
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In the above body surface conditions, σj is the porous-effect parameter, which is real, positive and is 

defined as σj = ρωbj/µ with ρ as the water density and µ as the dynamic viscosity of fluid. The parameter 

bj is the porosity coefficient with a dimension of length and j = 1, 2, 3 represents the upper and lower 

plates and sidewall of the cylindrical fish cage respectively.  

3. Solution to the problem 

To solve the above boundary value problem, the fluid domain is divided into two regions, i.e. an exterior 

region Ω1(r > a, -h < z < 0) and an interior one Ω2 (r < a, - h < z < 0) (see Fig. 1). The velocity potential 

has two parts accordingly, i.e. φ(e)(x) and φ(i)(x) valid in exterior and interior region respectively. 

The solution of the eigen-function expansion is readily obtained for the exterior region: 
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As well known, the first term in the first summation of the above expansion represents the incident wave 

potential. The parameter εn is equal to 1 as n = 0 and equal to 2 otherwise, and km (m = 1, 2, 3…) is the 

pure imaginary root of equation ν = ktanh kh. 

In the interior region, by means of variable separation, the potential can be expressed as: 
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The function f(Klz) and eigen value Kl satisfy the following differential equation and boundary conditions: 
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Taken into account of the governing equation, the free surface condition at z = 0, the sea bed condition at 



z = -h and the continuity of the normal velocity at z = -d1 and z = -d2, the function f(Kz) might be 

expressed as: 

KdKKdKdDKdD

dzhhzKQ

dzdddKdzKdhKQ
ddKdzKKdPD

zdKzKzKP

Kzf

sinhcosh)(:asdefinedis)(

)()(cosh

)()(sinh)(cosh)(sinh
)(sinh)(cosh)(

)0()sinhcosh(

)(

2

121212

1221

1

−ν=

















−<<−+

−<<−−+−−
−+

<<−ν+

=
 (6) 

To determine the unknown constants P, Q and the eigen value K, the above expression for f(Kz) is 

substituted into the remaining conditions at z = -d1 and z = -d2. The eigen value K is obtained by solving a 

complicated ‘dispersion-dissipation relation’ as follows: 
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The porous effect parameter σj varies from 0, i.e. impermeable, to infinite which means completely 

permeable. Some special cases will be discussed. When both σ1 and σ2 tend to infinite, the dispersion 

relation of exterior region, i.e. D(Kh) = 0, is recovered since both plates in the interior region are 

completely permeable or ‘disappeared’. When one of tends to infinite, it reduces to only one porous pate 

in the interior region. The results are the same as the previous works like in Chwang and Wu(1994). 

When σj vanishes, it gives a locally shallow water effect.  

There are infinite number of discrete complex root Kl = Klr + iKli (l = 1, 2, 3…) for the transcendental 

equation (7). It can be solved numerically, e.g. by means of the Newton-Raphson iteration method. One of 

the unknown constants P and Q can be arbitrarily chosen. In the present work, we put 

)1(sinhsinh)(sinh 22 dhKiKddhKKP −σ−−= , which yields )( 12 KdDiQ σ−= . 

It should be noted that the eigen-function f(Kl z) is orthogonal though its form is complicated, i.e. 
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The expression for Nl is too complicated. It had better be omitted in the present compact abstract. 

Once the eigen function f(Kl z) and eigen value Kl  are determined, the unknown 
coefficients Anm and Bnl  in (3) and (4) can be obtained by matching two parts of the 
velocity potential and normal velocity at the common interface r = a, -h< z < 0, i.e. 
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By means of the orthogonal property of eigen-functions, the above matching conditions 
yield a system of linear algebraic equations for the unknown coefficients Anm and Bnl, 
i.e. 
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In (10), the superscript prime denotes the derivative with respect to the argument. The 
coefficients Cm, Sml and Tml are all known and given by the integrals of eigen functions 
as follows: 
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Once the potential is solved in both regions, the hydrodynamic forces acting on the fish 
cage may calculated by integrating the pressure difference on two sides of the cage 
surface. By using the porous boundary condition, the integrand can be replaced by the 
normal velocity at the corresponding surface. 
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