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Where is xs the ship-fixed coordinate of the panel and h the mode shape vector. is is the
number of the body to which the panel is attached. The earth-fixed location of the panel, xe

is equal to:
xe = ȳd,r,(6is−5:6is−3) + Tes(ȳd,r,(6is−2:6is)) · xs (8)

The force by the pressure at the panel, f̄i will give an excitation force at the modes, Fi of:

Fi = hi · f̄i (9)

After all forces are known the accelerations are calculated and the next time step is
calculated.

Results

The motion of the coupled barges are calculated for an irregular head sea with a significant
wave height of 8 meter. Figure 5 shows the relative pitch angle between the barges using both
approaches in the time domain calculation. The results are almost identical. This shows both
approaches are valid in time domain. In the case the springs between the barges are much
weaker or when there is no coupling between the barges only the multi body approach will
be correct because the flexural modes can not describe large rotation correct.
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Figure 5: Relative pitch motion between barges

By introducing generalized modes for the hydrodynamic calculation it is possible to cal-
culate whipping, springing and multi body interaction. The (multi) body dynamics should be
accounted for if generalized modes are used in time domain.
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Three-dimensional capillary-gravity waves generated by a moving disturbance moving at a
constant velocity c on or below a free-surface are considered. The fluid is assumed to be of
infinite depth and steady solutions in a frame of reference moving with the disturbance are
sought. A classical application is the calculation of the wave pattern generated by a moving
ship. The problem is often modelled by potential flow and by neglecting surface tension. It is
then necessary to impose the radiation condition which requires that there is no energy coming
from infinity. This condition requires that the waves are behind the disturbance. It can easily
be imposed numerically by forcing the free-surface to be flat at some distance in front of the
disturbance (see for example [7], [8] and [1]).
For small disturbances (insects or probes), the effect of surface tension can be significant.

The situation is then more complicated. There is a minimum value cmin of c such that there
are no waves on the free-surface when c < cmin. The value of cmin is given by

cmin = (
4gT

ρ
)1/4 (1)

where T is the coefficient of surface tension (assumed to be constant), ρ is the fluid density and
g is the acceleration of gravity. For an interface between water and air, cmin ≈ 0.23ms−1.
Parau, Vanden-Broeck and Cooker ([2] and [3]) calculated numerically nonlinear solutions

for c < cmin. They showed that the free surface profiles are characterised by decaying oscilla-
tions in the direction of the motion of the disturbance and monotonic decay in the direction
perpendicular to the direction of motion of the disturbance. As the size of the disturbance ap-
proaches zero, the solutions reduce to either a uniform stream or a three-dimensional solitary
wave.
When c > cmin, two different wave systems can occur on the free-surface. Analytic solutions

have been derived by assuming a small disturbance and seeking a solution as a small perturba-
tion around a uniform stream (see for example [4], [5] and [6]). These linear results show that
the radiation condition forces the waves of longer wavelength to accur behind the disturbance
and those of shorter wavelength to occur at the front of the disturbance.
In this talk we supplement the linear theories for c > cmin with nonlinear computations.

Since waves occur both at the front and at the back of the disturbance, the radiation condition
cannot easily be imposed (as it was the case when T = 0). Here we adapt to the nonlinear
regime a technique introduced by Rayleigh to calculate analytically linear solutions. The idea
is to include a dissipative term in the dynamic boundary condition. This term is characterised
by an artificial viscosity µ > 0 known as the Rayleigh viscosity. Rayleigh showed that the linear
problem with µ = 0 has a unique solution and that the correct solution satisfying the radiation
condition is selected by taking the limit µ→ 0.
We show that nonlinear solutions satisfying the radiation condition can be calculated nu-

merically by using a boundary integral equation formulation in which a small Rayleigh viscosity
µ > 0 is introduced. The boundary integral equation formulation is based on ideas developed
by [7], [8], [1], [2] and [3]. For simplicity we assumed that the disturbance is a distribution
of pressure with bounded support (qualitatively similar results can be obtained for different
disturbances, for example moving submerged objects). We note that related approaches were
used before for two-dimensional free-surface flows ([9] and [10]).
Our solutions are not truly non-dissipative because µ = 0. The effect of µ = 0 on the

solutions can be estimated by comparing solutions with µ = 0 to known solutions with µ = 0.
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These known solutions include the solutions with T = 0 of Parau and Vanden-Broeck [1] and
the solutions of Parau, Vanden-Broeck and Cooker ([2] and [3]) for c < cmin. In both cases we
show that the effect of µ = 0 is relatively small, provided µ is small.
We conclude the talk by presenting nonlinear time dependent results obtained by a boundary

integral equation formulation. In particular we show how the steady gravity-capillary solutions
described in the first part of the talk can be computed as the long time behaviour of a time
dependent calculation.
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