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Introduction

For calculation of whipping, springing and multi-body interaction more than the standard six
degrees of freedom are needed. By generalizing all degrees of freedom to flexural modes it is
possible to create a code which can be used for whipping, springing, single and multi body
problems.This approach is described in [1] and [2] for frequency domain calculations.

Usually the hydrodynamic coefficients are calculated using pre-defined displacements of
every panel for the six degrees of freedom. Using the general modes approach, the displace-
ments of the panels is an additional input for the hydrodynamic calculation. For example:
a heave mode is created by a shape vector with (0, 0, 1) for all panels. The shape vector as
calculated by e.g. a beam or 3D FEM is used for modes for whipping or springing calculations.

In the frequency domain, rigid bodies and the bending modes can be treated exactly equal.
After the hydrodynamic coefficients are calculated the system of unknowns displacements can
be solved and the response of all modes is known. Due to the non-linear terms in the time
domain calculation, it is not possible to solve rigid body and bending modes in a similar way.
It is necessary to account for the rigid (multi) body dynamics.

Example

The response of two coupled barges, see figure 1, is calculated to illustrate the use of gener-
alized modes in time domain. Springs in all directions are used to couple the barges.

Figure 1: Barge

The response is calculated using two approaches. For the first approach the barges are two
bodies coupled with springs. In this case the first six DoFs are the rigid body displacements
of the first barge and the second six DoFs are the rigid body displacements of the second
barge. For the second approach the two barges are considered to be one flexible body. The
first six DoFs are the rigid body motions of the two barges together and the other six are
flexural modes between the barges. The heave and pitch motions of the two approaches are
shown in figure 2.

In frequency domain both approaches result in exactly the same response. In the time
domain the one flexible body approach will be incorrect when the relative angles between the
barges are large. When for the two bodies the (Euler) rotations are correctly taken into account
the shape of the bodies will still be correct with large rotations. The flexural approach will
result in a distorted shape if the angles are large. The difference between the two approaches is
shown in figure 3. This difference shows also the need to account for the rigid body dynamics
of all bodies.
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(b) Single body(a) Multi body

Figure 2: Degrees of freedom for heave and pitch

Figure 3: Shape of 30 degree pitch for single body (dotted) and double body

Time domain

The response of the modes are calculated using the procedure proposed by Cummings [3]:

(m + m∞
a ) · Ȳa +

 t

0
K(t − τ) · Ȳv dτ + k · Ȳd = F̄ (t) (1)

Vectors Ȳa, Ȳv and Ȳd are the actual acceleration, velocity and displacements of all modes.
The 4th order Runge Kutta method is used to integrate this equation of motion.

Figure 4 shows the different coordinate systems that are used. Every body has his own
ship-fixed system.
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Figure 4: Coordinate systems

Modal description

The mode shapes are described by the modal shape vector h̄i. This vector is created for all
points: panels and masses. The same vector is also used for the frequency domain calculation.
For the non-linear time domain calculation an additional matrix S is introduced which trans-
fers the modes to the six rigid body DoFs of the individual bodies. Matrix S has a number of
columns which is equal to the number of modes and the number of rows is equal the number
of bodies times six. For a normal single body calculation this matrix will be the identity
matrix. For two body calculation with only heave and pitch modes, matrix S will be a 12 by
4 matrix.

The rows of the S-matrix for bending modes for whipping and springing are filled with
zeros because these are not rigid body motions. It is assumed that all modes are either rigid
or pure bending without a rigid component.

Dynamics

The accelerations for all DoFs are solved in the ship-fixed frames. The motions are integrated
in a earth-fixed frame. Before the acceleration can be integrated, all accelerations of rigid
body modes have to be transfered to the earth-fixed frame using the Euler transformation
matrix.

Vector ȳa,sf are the ship-fixed accelerations of all modes. The ship-fixed accelerations of
rigid body modes are obtained by:

ȳa,r,sf = S · ȳa,sf (2)

The same transformation is applied to obtain the rigid body motions:

ȳd,r = S · Ȳd (3)

For every individual body, n, the ship-fixed accelerations are transfered to earth-fixed
accelerations:

ȳa,r,e,(6n−5:6n) = Tse(ȳd,r,(6n−2:6n)) · ȳa,r,sf,(6n−5:6n) (4)

Where Tse is the Euler transformation matrix from ship-fixed to earth-fixed. The earth-fixed
acceleration vector Ȳa is obtained by:

Ȳa = ST · ȳa,r,e (5)

For the non-rigid body modes there are no differences between the earth and ship fixed
coordinate systems:

Ȳa,(i) = ȳa,r,e,(i), where S(n,:) ≡ 0 (6)

The earth-fixed acceleration vector Ȳa is used for integration of the motions.

Forces

The pre-calculated hydrodynamic coefficients are used to calculate the diffraction and radiated
forces. These coefficients are obtained using the mode shape vectors, therefore the coefficients
will give the correct excitation for all the modes.

The radiation force is calculated using retardation functions. The hydrodynamic coeffi-
cients are considered to be earth-fixed, therefore the radiation force can be obtained by the
history of the Ȳv vector.

The diffraction force is calculated using the frequency domain RAOs. The actual location
of the different bodies is used to calculate the diffraction force for all modes of the bodies.

The same kind of transformation as used in equations (2) to (6) are used to transfer the
earth-fixed force to ship-fixed.

The pressure of the incoming wave and the hydrostatic pressure are calculated for every
panel. This pressure is dependent on the earth-fixed location of the panel. The earth-fixed
location is the earth-fixed displacement of the CoG of the body to which the panel belongs
plus the earth-fixed distance between the panel and the CoG. The non-rigid modes displace
in the ship-fixed frame. The total ship-fixed distance between the CoG and the panel is:

xst = xs +
ndof

i=1

Ȳd,(i) · hi,where S(i,:) ≡ 0 (7)
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Modal description

The mode shapes are described by the modal shape vector h̄i. This vector is created for all
points: panels and masses. The same vector is also used for the frequency domain calculation.
For the non-linear time domain calculation an additional matrix S is introduced which trans-
fers the modes to the six rigid body DoFs of the individual bodies. Matrix S has a number of
columns which is equal to the number of modes and the number of rows is equal the number
of bodies times six. For a normal single body calculation this matrix will be the identity
matrix. For two body calculation with only heave and pitch modes, matrix S will be a 12 by
4 matrix.

The rows of the S-matrix for bending modes for whipping and springing are filled with
zeros because these are not rigid body motions. It is assumed that all modes are either rigid
or pure bending without a rigid component.

Dynamics

The accelerations for all DoFs are solved in the ship-fixed frames. The motions are integrated
in a earth-fixed frame. Before the acceleration can be integrated, all accelerations of rigid
body modes have to be transfered to the earth-fixed frame using the Euler transformation
matrix.

Vector ȳa,sf are the ship-fixed accelerations of all modes. The ship-fixed accelerations of
rigid body modes are obtained by:

ȳa,r,sf = S · ȳa,sf (2)

The same transformation is applied to obtain the rigid body motions:

ȳd,r = S · Ȳd (3)

For every individual body, n, the ship-fixed accelerations are transfered to earth-fixed
accelerations:

ȳa,r,e,(6n−5:6n) = Tse(ȳd,r,(6n−2:6n)) · ȳa,r,sf,(6n−5:6n) (4)

Where Tse is the Euler transformation matrix from ship-fixed to earth-fixed. The earth-fixed
acceleration vector Ȳa is obtained by:

Ȳa = ST · ȳa,r,e (5)

For the non-rigid body modes there are no differences between the earth and ship fixed
coordinate systems:

Ȳa,(i) = ȳa,r,e,(i), where S(n,:) ≡ 0 (6)

The earth-fixed acceleration vector Ȳa is used for integration of the motions.

Forces

The pre-calculated hydrodynamic coefficients are used to calculate the diffraction and radiated
forces. These coefficients are obtained using the mode shape vectors, therefore the coefficients
will give the correct excitation for all the modes.

The radiation force is calculated using retardation functions. The hydrodynamic coeffi-
cients are considered to be earth-fixed, therefore the radiation force can be obtained by the
history of the Ȳv vector.

The diffraction force is calculated using the frequency domain RAOs. The actual location
of the different bodies is used to calculate the diffraction force for all modes of the bodies.

The same kind of transformation as used in equations (2) to (6) are used to transfer the
earth-fixed force to ship-fixed.

The pressure of the incoming wave and the hydrostatic pressure are calculated for every
panel. This pressure is dependent on the earth-fixed location of the panel. The earth-fixed
location is the earth-fixed displacement of the CoG of the body to which the panel belongs
plus the earth-fixed distance between the panel and the CoG. The non-rigid modes displace
in the ship-fixed frame. The total ship-fixed distance between the CoG and the panel is:

xst = xs +
ndof

i=1

Ȳd,(i) · hi,where S(i,:) ≡ 0 (7)
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Where is xs the ship-fixed coordinate of the panel and h the mode shape vector. is is the
number of the body to which the panel is attached. The earth-fixed location of the panel, xe

is equal to:
xe = ȳd,r,(6is−5:6is−3) + Tes(ȳd,r,(6is−2:6is)) · xs (8)

The force by the pressure at the panel, f̄i will give an excitation force at the modes, Fi of:

Fi = hi · f̄i (9)

After all forces are known the accelerations are calculated and the next time step is
calculated.

Results

The motion of the coupled barges are calculated for an irregular head sea with a significant
wave height of 8 meter. Figure 5 shows the relative pitch angle between the barges using both
approaches in the time domain calculation. The results are almost identical. This shows both
approaches are valid in time domain. In the case the springs between the barges are much
weaker or when there is no coupling between the barges only the multi body approach will
be correct because the flexural modes can not describe large rotation correct.
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Figure 5: Relative pitch motion between barges

By introducing generalized modes for the hydrodynamic calculation it is possible to cal-
culate whipping, springing and multi body interaction. The (multi) body dynamics should be
accounted for if generalized modes are used in time domain.
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Three-dimensional capillary-gravity waves generated by a moving disturbance moving at a
constant velocity c on or below a free-surface are considered. The fluid is assumed to be of
infinite depth and steady solutions in a frame of reference moving with the disturbance are
sought. A classical application is the calculation of the wave pattern generated by a moving
ship. The problem is often modelled by potential flow and by neglecting surface tension. It is
then necessary to impose the radiation condition which requires that there is no energy coming
from infinity. This condition requires that the waves are behind the disturbance. It can easily
be imposed numerically by forcing the free-surface to be flat at some distance in front of the
disturbance (see for example [7], [8] and [1]).

For small disturbances (insects or probes), the effect of surface tension can be significant.
The situation is then more complicated. There is a minimum value cmin of c such that there
are no waves on the free-surface when c < cmin. The value of cmin is given by

cmin = (
4gT

ρ
)1/4 (1)

where T is the coefficient of surface tension (assumed to be constant), ρ is the fluid density and
g is the acceleration of gravity. For an interface between water and air, cmin ≈ 0.23ms−1.

Parau, Vanden-Broeck and Cooker ([2] and [3]) calculated numerically nonlinear solutions
for c < cmin. They showed that the free surface profiles are characterised by decaying oscilla-
tions in the direction of the motion of the disturbance and monotonic decay in the direction
perpendicular to the direction of motion of the disturbance. As the size of the disturbance ap-
proaches zero, the solutions reduce to either a uniform stream or a three-dimensional solitary
wave.

When c > cmin, two different wave systems can occur on the free-surface. Analytic solutions
have been derived by assuming a small disturbance and seeking a solution as a small perturba-
tion around a uniform stream (see for example [4], [5] and [6]). These linear results show that
the radiation condition forces the waves of longer wavelength to accur behind the disturbance
and those of shorter wavelength to occur at the front of the disturbance.

In this talk we supplement the linear theories for c > cmin with nonlinear computations.
Since waves occur both at the front and at the back of the disturbance, the radiation condition
cannot easily be imposed (as it was the case when T = 0). Here we adapt to the nonlinear
regime a technique introduced by Rayleigh to calculate analytically linear solutions. The idea
is to include a dissipative term in the dynamic boundary condition. This term is characterised
by an artificial viscosity µ > 0 known as the Rayleigh viscosity. Rayleigh showed that the linear
problem with µ = 0 has a unique solution and that the correct solution satisfying the radiation
condition is selected by taking the limit µ→ 0.

We show that nonlinear solutions satisfying the radiation condition can be calculated nu-
merically by using a boundary integral equation formulation in which a small Rayleigh viscosity
µ > 0 is introduced. The boundary integral equation formulation is based on ideas developed
by [7], [8], [1], [2] and [3]. For simplicity we assumed that the disturbance is a distribution
of pressure with bounded support (qualitatively similar results can be obtained for different
disturbances, for example moving submerged objects). We note that related approaches were
used before for two-dimensional free-surface flows ([9] and [10]).

Our solutions are not truly non-dissipative because µ = 0. The effect of µ = 0 on the
solutions can be estimated by comparing solutions with µ = 0 to known solutions with µ = 0.




