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� Introduction
The interaction of water waves with large arrays
of bodies is of considerable importance in the
design of many offshore structures. A standard
technique based on separation of variables can be
used to model such situations [1], however this is
devised for arbitrary configurations of scatterers.
When the number of bodies is large, expensive
numerical computations are required, and under-
standing of the interaction effects is easily lost. In
this article, we will develop a new method which
aims to exploit the simple geometry of a long ar-
ray of equally spaced scatterers. We shall refer
to this as the ‘large array approximation’ (LAA).
The essential idea is to assume that the array is
sufficiently large to allow the ends to be treated
separately, unless Rayleigh–Bloch (RB) surface
waves are excited. These propagate without loss
along the array, and can cause strong interactions
between the ends. In particular, we will show
how such interactions can lead to powerful forces
being exerted on central elements of the array [2],
and give a qualitative explanation of this effect.
For simplicity, we will consider scattering of a
plane wave by an array of cylinders parallel to
the direction of propagation (head on incidence).

� Notation
Consider a periodic array of bottom mounted ver-
tical circular cylinders of radius a standing in a
fluid of constant depth h. The problem is scaled
so that the axis of cylinder p is located at the point
(p, 0) in the (x, y) plane, where p = 0, 1, . . . , P ,
see Fig. 1. The plane wave

φi = Re[eikxe−iωt] cosh[k(z + h)] (1)
is incident upon the array. The depth and time
dependence of all fields is identical to (1); hence-
forth we omit the factors e−iωt and cosh[k(z +
h)], and also the symbol Re. We are left with
a two dimensional scattering problem in which
all fields φ(x, y) satisfy the Helmholtz equation
(∇2 +k2)φ = 0. Introducing shifted sets of polar
co-ordinates (rp, θp) with the origin positioned at
the point (p, 0), the boundary condition for the

total field may be expressed as ∂φt/∂rp = 0 on
rp = a.

In order to construct the LAA, we require the
solutions to several canonical problems, in which
the row of scatterers extends to infinity in one or
more directions. Therefore we introduce the term
‘{p0, p1} array’ to refer to the array consisting of
scatterers centred at p = p0, . . . , p1. In general,
the field scattered by such an array may be writ-
ten in the form

φs =

p1
�

p=p0

∞
�

m=−∞

Up
mZm H(1)

m (krp)e
imθp , (2)

and the coefficients Up
m satisfy the linear system

Up
m +

∞
�

n=−∞

Zn

p1
�

j=p0

�=p

U j
nX

jp
n−m H

(1)
n−m(k|j − p|)

= Rp
m. (3)

Here p = p0, . . . , p1, m ∈ Z, Xjp
n = 1 if

p > j and Xjp
n = (−1)n if p < j. Also,

Zm = J′m(ka)/H(1)′
m (ka). The quantity Rp

m on
the right-hand side of (3) is determined by the in-
cident field; for the plane wave (1) we have

Rp
m = −eipkim. (4)

The order summations appearing in (2) and (3)
(i.e. those over over m and n) converge exponen-
tially and only a few terms are required to achieve
a high degree of accuracy. However, if the array
is large, so that p1 ≫ p0, then directly solving
(3) becomes computationally expensive. Since
the incident field propagates parallel to the array,
the problem is symmetric about y = 0, and this
leads to the simplification Up

m = (−1)mUp
−m. We

write equations in such a way that the order sum-
mations range over all of Z, since this is the most
concise presentation. Symmetry is exploited to
expedite numerical calculations, however.

� Rayleigh–Bloch wa�es
At low frequencies, the {−∞,∞} array can sup-
port RB surface waves. These propagate without
loss along the array, and correspond to homoge-
neous solutions of (3). We therefore set Rp

m = 0,
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Fig. 1: Schematic diagram of the array.

for all m, p ∈ Z, write

Up
m = B̃meipβ̃, (5)

and seek values of β̃ for which (3) possesses
a nontrivial solution. These can be deter-
mined using the method in [3], as can the non-
trivial solution itself, which we scale so that
�∞

m=−∞ |B̃mZm|
2 = 1. Note that (5) represents

a right-propagating mode; its left-propagating
counterpart is obtained by replacing β̃ and B̃m

with −β̃ and (−1)mB̃m, respectively. Given the
evident 2π periodicity in (5), we may restrict at-
tention to the range β̃ ∈ [0, π]. For any given
scatterer size a ∈ (0, 0.5), RB waves that are
symmetric about y = 0 exist at a range frequen-
cies satisfying 0 < k < kmax < π. The value
of the cut-off must be determined numerically; a
plot of kmax against a is given in [4]. Numeri-
cal results will be presented here for a = 0.25
(as in [2]), in which case we have the approxi-
mate value kmax = 2.7826. At the cut-off value,
β̃ = π for all scatterer sizes, so that the RB wave
ceases to propagate and takes the form of a stand-
ing mode. The fact that β̃ = π causes the system
of equations for B̃m given in [3] to decouple into
two subsystems, one each for the odd and even
modes. In general, these two subsystems cannot
both possess nontrivial solutions, and numerical
results confirm that, when k = kmax, B̃2m = 0
for all m.

The canonical problem of the {0,∞} array
under excitation of a left-propagating Raleigh–
Bloch wave incident from the far field has not
been previously considered. We consider an in-
cident wave with unit amplitude, so that the total
field for this problem can be written as

φt =
∞

�

n=−∞

Zn

∞
�

j=0

�

(−1)nB̃ne
−ijβ̃ +Qp

n

�

× H(1)
n (krj)e

inθj , (6)
where, in terms of (3), Up

m = Qp
m, i.e. Qp

m rep-
resents the scattered response. The appropriate

form for Rp
m is obtained by taking the known

term to the right-hand side, and exploiting the fact
that the RB wave is a homogeneous solution to
the {−∞,∞} problem. We find that

Rp
m = e−ipβ̃

∞
�

n=−∞

(−1)nZnB̃n

∞
�

j=1+p

eijβ̃ H
(1)
n−m(kj).

(7)
Now each coefficient Qp

m includes a contribution
from a right-propagating RB wave generated by
reflection, therefore we write

Qp
m = ρeipβ̃B̃m + T p

m, (8)
where T p

m → 0 as p → ∞. The parameter ρ is
the end reflection coefficient.

This problem can be trivially solved by in-
spection in the case where k = kmax, when
there is no distinction between the left- and right-
propagating RB waves. Thus, if we take ρ = 1
and T p

m = 0, then (3) is satisfied, since B̃2m = 0
for all m. At other frequencies, the value of ρ
and the coefficients T p

m can be calculated numer-
ically using the filtering methods developed in
[4]. For all scatterer sizes, the magnitude of ρ re-
mains small until k approaches kmax, after which
the real part increases sharply toward the limiting
value 1.

We can obtain the leading order behaviour of
the far field on the array (i.e. for |y| < a and
x → ∞) in modal form by using an integral
representation for H(1)

n (kr)einθ [5]. A straightfor-
ward procedure shows that, in the limit x → ∞,

φs∼
∞

�

j=−∞

Ãje
iky sin ψ̃j

�

ρeikx cos ψ̃j +e−ikx cos ψ̃j

�

, (9)

which is valid for y > 0. Here, k cos ψ̃j =
β̃ + 2jπ, sin ψ̃j is positive real or positive imagi-
nary, and

Ãj =
2

k sin ψ̃j

∞
�

n=−∞

(−i)nB̃nZne
inψ̃j . (10)

Equivalent results for y < 0 can be deduced by
symmetry, but the modal form is not valid on
y = 0. To an observer positioned in this region
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Fig. 2: Force on cylinder 50 of a 101 scatterer array, with a = 0.25 and varying k using the direct method and the LAA.
Legend: × cut-off for symmetric RB modes, • (�): peak (minimum) predicted by (15) and (16).

of the far field the array end appears to act as if
there is a ‘wall’ located at x = −1/2, with re-
flection coefficient ρe−iβ̃ . It turns out that the
imaginary part of this quantity is negligible rel-
ative to the real part (which is negative) when
k is close to kmax. This is the root cause of the
connection between the near trapping effect dis-
cussed in §5 and trapped modes on an array in a
channel [2, 3]. The approximation Im[ρe−iβ̃] = 0
generally gives very good results, and becomes
increasingly accurate at the scatterer size a is re-
duced.

� The large array approximation
We now construct an approximation to the scat-
tered field generated by the plane wave (1) in-
cident upon the {0, P} array, according to the
LAA. Thus, we write Up

m = F p
m, where

F p
m = Ap

m + µ+Qp
m + µ−eiP β̃QP−p

−m . (11)
Here, the first term on the right-hand side is gen-
erated directly by the impact of the incident field
on the array, whereas the last two terms represent
effects due to the repeated reflection of the RB
waves. Thus, the coefficient Ap

m is obtained by
considering scattering of the plane wave (1) by
the {0,∞} array. Results in [4] show that

Ap
m = αeipβ̃B̃m + Cp

m, (12)
i.e. Ap

m includes a contribution due to a right-
propagating RB wave with a (complex) ampli-
tude coefficient α, and a contribution denoted Cp

m

which decays as p → ∞. The value of α de-
pends upon the frequency and the scatterer size,
and may be determined numerically (along with
the coefficients Cp

m) using the double filtering
method developed in [4].

Now the coefficient Qp
m represents the re-

sponse to a left-propagating RB wave of unit am-
plitude incident on the left end. If we consider
the {−∞, P} array under excitation by a right-
propagating RB wave of unit amplitude, we find

that the coefficients representing the scattered re-
sponse are given by Up

m = eiP β̃QP−p
−m . In view of

this, the parameters µ+ and µ− are equal to the
total amplitude of the left- and right-propagating
RB waves, respectively, hence

µ+ = ρe2iP β̃µ−; µ− = α+ ρµ+. (13)
Solving these equations leads to

µ+ =
ραe2iP β̃

1− ρ2e2iP β̃
; µ− =

α

1− ρ2e2iP β̃
. (14)

The amplitudes of the left- and right-propagating
RB waves on the finite array are thus determined
in terms of α and ρ, which are known from the so-
lutions to the canonical problems. Note that the
right-hand side of (11) remains finite as β̃ → π
(so that ρ → 1), since both T p

m and B̃2m vanish in
this limit.

� Near trapping
The modulus of the coefficient Up

1 represents the
force in the x direction exerted by the wave field
on element p of the array, normalised using the
force exerted by a plane wave of unit amplitude
on a scatterer in isolation. Strong forces have pre-
viously been observed at the centre of long arrays
at certain discrete frequencies when k is close to
the cut-off value kmax; this effect is known as
‘near trapping’. Part of the reason for this effect
is simply the large value of the end reflection co-
efficient, ρ. Furthermore, at such frequencies, the
phase of the RB wave is unaffected by traversing
the array twice, and undergoing two reflections,
that is the quantity ρ2e2iP β̃ is positive real. Conse-
quently, the left- and right-propagating RB modes
are in phase with their respective multiple reflec-
tions, leading to constructive interference. Given
that Im[ρe−iβ] ≈ 0, the frequencies correspond to
values of β̃ satisfying
β̃ ≈ [1− q/(P + 1)]π, q = 1, 2, . . . , P. (15)

Increasing P allows β̃ to take a value closer to
π (thus increasing |ρ|), therefore near trapping is
more prevalent on larger arrays.
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Fig. 3: Contour plot showing Re[φt] for a 101 scatterer array, with a = 0.25 and k = 2.7778.

Fig. 2 shows logarithmic plots of the horizon-
tal force on the center cylinder of a 101 scatterer
array, with a = 0.25 and varying k. The coeffi-
cientsCp

m and T p
m were computed numerically for

p ≤ 50. For p > 50, the leading order asymptotic
form is used; see [4]. Similar results have been
obtained for larger arrays, without increasing the
accuracy with which the canonical problems are
solved. The only discrepancy between the LAA
and the exact theory occurs when k is slightly
larger than the cut-off value ks

max. The most likely
cause of this is that the RB modes, which have
been omitted from the LAA for k > ks

max are
now evanescent in x, but can still cause interac-
tions between the ends when Im[β̃] is small. The
locations at which peaks and troughs occur in the
force can be predicted using equations (8), (11)
and (14). Thus, the left- and right-propagating
RB waves are in phase with eachother when p is
chosen so that the quantity 1− ρe2i(P−p)β̃ is max-
imised, and out of phase when it is minimised.
Retaining the approximation that ρe−iβ is nega-
tive real, and applying (15), we find that

1− ρe2i(P−p)β̃ ≈ 1− |ρ|eiqπ(2p+1)/(P+1). (16)

If, as is the case here, we are concerned with
the force at the centre of the array then, since
p = P/2, odd and even values for q cause the
waves to be in and out of phase with eachother,
respectively. The corresponding frequencies are
shown in Fig. 2; the agreement is excellent.

Fig. 3 shows a contour plot for k = 2.7778
on a 101 scatterer array, with a = 0.25 as before.
Note that this is a plot of the real part of the to-
tal field, but the incident wave is not visible due
to the strength of the near trapping effect. This
wavenumber corresponds to taking q = 2 in (15),
and is the right-most point marked with a ‘�’ in
Fig. 2. Consequently, (16) predicts that elements
close to p = 25 and p = 75 are subject to the
greatest force, whereas the force on the central
elements is small.

� Concluding remarks
We have developed a new method for investigat-
ing scattering by long arrays of circular cylinders,
based on the use of solutions to certain canonical
problems. Whilst this includes a numerical el-
ement, the required computation time is largely
determined by the speed at which the canonical
solutions can be calculated, and is barely affected
by increasing the array size. It therefore offers
considerable reductions in computation time over
the direct method. Furthermore, the LAA offers
significantly improved insight into scattering by
large arrays. In particular, it accurately captures
the effect of near trapping, where large forces are
exerted on certain elements of the array, and fa-
cilitates predictions of the frequencies at which
this can occur. In this paper, we have consid-
ered only head-on incidence upon a linear array
of cylinders, however the method is not restricted
to this case. It can also be used for arrays consist-
ing of multiple rows, and different shaped scatter-
ers, provided that the relevant canonical problems
can be solved. The case of oblique incidence
is a simple extension requiring only that excita-
tion of both ends of the array by the incident field
is taken into account. Numerical results for this
case will be shown at the workshop.
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Introduction

For calculation of whipping, springing and multi-body interaction more than the standard six
degrees of freedom are needed. By generalizing all degrees of freedom to flexural modes it is
possible to create a code which can be used for whipping, springing, single and multi body
problems.This approach is described in [1] and [2] for frequency domain calculations.

Usually the hydrodynamic coefficients are calculated using pre-defined displacements of
every panel for the six degrees of freedom. Using the general modes approach, the displace-
ments of the panels is an additional input for the hydrodynamic calculation. For example:
a heave mode is created by a shape vector with (0, 0, 1) for all panels. The shape vector as
calculated by e.g. a beam or 3D FEM is used for modes for whipping or springing calculations.

In the frequency domain, rigid bodies and the bending modes can be treated exactly equal.
After the hydrodynamic coefficients are calculated the system of unknowns displacements can
be solved and the response of all modes is known. Due to the non-linear terms in the time
domain calculation, it is not possible to solve rigid body and bending modes in a similar way.
It is necessary to account for the rigid (multi) body dynamics.

Example

The response of two coupled barges, see figure 1, is calculated to illustrate the use of gener-
alized modes in time domain. Springs in all directions are used to couple the barges.

Figure 1: Barge

The response is calculated using two approaches. For the first approach the barges are two
bodies coupled with springs. In this case the first six DoFs are the rigid body displacements
of the first barge and the second six DoFs are the rigid body displacements of the second
barge. For the second approach the two barges are considered to be one flexible body. The
first six DoFs are the rigid body motions of the two barges together and the other six are
flexural modes between the barges. The heave and pitch motions of the two approaches are
shown in figure 2.

In frequency domain both approaches result in exactly the same response. In the time
domain the one flexible body approach will be incorrect when the relative angles between the
barges are large. When for the two bodies the (Euler) rotations are correctly taken into account
the shape of the bodies will still be correct with large rotations. The flexural approach will
result in a distorted shape if the angles are large. The difference between the two approaches is
shown in figure 3. This difference shows also the need to account for the rigid body dynamics
of all bodies.




