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     The restoring force coefficients Cij are nonlinear, Froude number and time-dependent. 
However, for simplicity Troesch (1992) used a linear modeling, in which Cij were determined at 

j=0 from the experimental data in steady cases when a constant heave or pitch was given to the 
hull. To compare with the experiments, we follow the same way to decide Cij. The calculated 
added mass and damping coefficients for the five different frequencies are compared with the 
experimental results in Fig.3. EXP. means experiments; NUM. means the present calculations. 
     All the damping coefficients and added mass coefficients except A35 seem to be independent 
of the frequency. There is large discrepancy between the experiments and calculations for A35,
however, the agreement looks better for higher frequencies. From the study of the unified theory 
and the traditional strip theory (Newman and Sclavounos, 1981), it can be shown that three-
dimensional effects matter more for lower frequencies in the strip theory. This can also be true 
for the present method, because we have neglected some three-dimensionalities. It was shown in 
Sun and Faltinsen (2007) that the 3D effect at the transom stern will apparently affects the force 
and the moment on the hull. After a certain correction of this 3D effect, better results were 
obtained. The same correction for the 3D effects at the transom is applied here. The results after 
the 3D correction are shown in Fig. 4. Then the agreement in damping coefficients is improved 
and they are still almost frequency independent. The agreement for A35 looks better. The other 
three coefficients become slightly frequency dependent. Experiments also show slightly 
frequency dependent added masses. However, there is better agreement at higher frequencies and 
larger discrepancy at lower frequencies. We have to notice another effect which can influence the 
comparison. It is the influence of the estimated restoring force coefficients Cij. Those coefficients 
used in Troesch (1992) are not directly given in his paper. Errors in Cij will cause larger 
discrepancy in Aij for lower frequencies because the added masses are calculated from Aij =
[(a1)ij Cij ja]/( 2

ja). The error is proportional to 1/ 2. Further, 3D effects near the chine wetted 
position, where the chine line starts to get wetted, cause overestimated force near this position, as 
shown in Sun and Faltinsen (2007). This effect will also cause errors in the results of the added 
mass and damping coefficients. Again, the effect is supposed to be more prominent for lower 
frequency cases. 
     Our future plan is to study the effect of nonlinearities which are particularly important for 
planing vessels in waves. 
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INTRODUCTION 

Arrays of vertical surface piercing columns in an 
otherwise empty ocean exhibit near-trapped modes – 
which may be defined as modes of strong local free 
surface vibration that ‘fit within the array’ but which are 
damped by radiation to infinity. Such modes may be 
excited by incident free waves with the necessary 
frequency, or through forcing by nonlinear combinations 
of freely incident linear waves. The most well-known 
example of this nonlinearity is second-order near 
trapping as described by Malenica, Eatock Taylor and 
Huang (1999). The excitation at second order is local to 
the cylinder array, through products of pairs of waves 
with component frequencies )f,f( 21 , the vigorous 
response being at the sum frequency. 

This paper presents a discussion of the nature of the 
quadratic sum response for pairs of input frequencies 
with the same output frequency sum, giving rise to a 
large 2nd order contribution to the free-surface elevation 
in the array t)ff(2IExpAA)y,x(QTF 2121

)2( . The 
spatial structure of the response is implicit within the 
complex QTF coefficient. 

An apparently new observation is the general form of the 
sum QTF when near-trapping is significant. Ordinarily 
the QTF is viewed as having 2 arguments, being the 
frequencies )f,f( 21  of the input wave pair. Instead, an 
informative way of treating these arguments is as the sum 
output frequency )ff(2 21 and the frequency 
difference )ff(2 21 , this being the distance away 
from the leading diagonal. In some cases the sum QTF in 
this form is a strong function of the output frequency (as 
expected) and virtually independent of the distance away 
from the leading diagonal. This observation has the same 
empirical form as the Newman approximation (1974) for 
difference frequency force QTFs for vessels in irregular 
waves but here we claim that it can apply to surface 
elevation sum QTFs for cylinder arrays.

If this result can be justified, it would be very useful in 
an engineering design context since calculation of the full 
(N N) QTF matrix for N linear input components 
requires considerable computational effort using codes 
such as WAMIT or DIFFRACT. We suggest that the 
whole matrix might be approximated using only the 
leading diagonal.  

We conclude with a realistic practical example showing 
that 2nd order near-trapping may be significant in the 
context of offshore engineering design. 

LINEAR RESPONSE 

We consider a 4-column concrete gravity base structure 
with a caisson of height 15m standing in water of depth 
53m, as shown in Figure 1. Plane waves are incident 
from the left. Figure 2 shows the linear transfer function 
for surface elevation for this structure at a point on the 
center-line between the front two legs (x=-35m, y=0m).  
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   FIGURE 1. A four column structure on a caisson 

Figures 3 and 4 show the surface elevation around the 
structure for an input frequency of 1f =0.126Hz, the 
lowest response peak. Note the regions of very vigorous 
surface response, between the front legs and close to the 
rear legs. 
__________________________                          
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FIGURE 2. Linear surface elevation amplification 
                   between the front two legs 
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   FIGURE 3. Contour map of linear surface    
                   motion for waves at 1f =0.126Hz. 
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FIGURE 4. Linear amplitude response profile along   
          the center-line of the structure at 1f =0.126Hz. 

SECOND ORDER EXCITATION OF ENHANCED 
SURFACE RESPONSE 

Significant linear amplification only occurs for short 
waves with periods of ~8s and less. Severe winter storms 
with large significant wave heights typically have periods 
rather greater than this, so the question arises as to 
whether a large second order sum response might occur 
for a ~16s incident wave. Thus, we consider the structure 

excited by steep regular waves with a frequency 
1f =0.063Hz, chosen such that twice this frequency 

is 1f2 =0.126Hz, a frequency that we already know the 
structure responds at vigorously. We use the Oxford 2nd

order diffraction program DIFFRACT (Eatock Taylor 
and Chau 1992). 

Figure 5 shows the amplitude of the 2nd order sum 
response along the centre-line of the structure for this 
monochromatic incident wave. Two obvious remarks can 
be made: the peak values of the non-dimensionalised 
response are large: )Ak(/ 2)2( ~ 10, and the geometric 
shape of the profile is remarkably similar to that of the 
linear response function. Notice the amplitude of this 2nd

order sum local response is an order of magnitude larger 
than the bound 2nd order sum term in the incident wave, 
and even for a modest wave steepness the 2nd order sum 
response within the cylinder array can be as large as the 
linear incident wave. In Figure 5, the modulus of the total 
2nd order response is shown as the solid line, the dashed 
line is the 2nd order potential part and the dotted line the 
2nd order quadratic part, which shows no enhanced near-
trapping behaviour. 
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 FIGURE 5. 2nd order sum amplitude profile along 
        the center-line of the structure at 1f2 =0.126Hz.   

QTFS OFF THE LEADING DIAGONAL 

We now discuss the general form of the 2nd order 
quadratic transfer functions for a pair of incident linear 
waves with frequencies )f,f( 21  and amplitudes )A,A( 21 .
The QTFs are now dimensional, having units of 1/m, and 
are defined in terms of the 2nd order surface as: 
        t)ff(2IExpAA)y,x(QTF 2121

)2(

We present the QTF surface in Figure 6 as 3-D views of 
the real and imaginary parts, viewed so that the 1:1 
frequency leading diagonal runs left to right and the 
frequency difference runs towards and away from the 
viewpoint. The geometry and wave approach direction 
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are still as shown in Figure 1. The input range of 
frequencies is chosen such that output frequencies 

)ff(2 21  cover the two lowest frequency peaks 
shown in Figure 2. 

These particular views are for the free-surface QTF at a 
point close to one of the rear legs, but the observation 
that the QTFs are virtually independent of the frequency 
difference )ff(2 21  with )ff(2 21 fixed is 
true for all free-surface points within the array that we 
have examined. Notice also the strong variation of the 
QTFs in both amplitude and phase in the 1:1 frequency 

)ff(2 21 direction, akin to the variation of the 
linear transfer function with frequency.  
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FIGURE 6. Form of the QTF matrix with )f,f( 21 .    
                   Top real part, bottom imaginary. 

WHY THE QTFS ARE NEAR FLAT? 

The vigorous second order sum responses of a cylinder 

array are dominated by the second order sum potential. 
Although there is a quadratic contribution, this is small 
(~O(1) 2Ak , see Figure 2).The second order potential 
response can be itself be separated into 2 parts: the 
scattering of the incoming bound second order sum 
potential and the field driven by the free-surface integral. 

We consider the free-surface integral contribution first. 
This can be written as the solution to a linear wave-like 
equation: 

    )y,x(f
gz

)2(
2)2(

The term )ff(2 21 is the sum output frequency at 
second-order. The source )y,x(f  is simply a set of 
products of linear wave components. This equation has 
an integral solution 

    FB

)2(

B
)2()2( dSfGdS

n
GdS

n
G2 ,

the first 2 integrals being over the rigid body surface, the 
3rd integral being over the free-surface.  

)(G is a linear Green’s function for the potential )2( .
Its basic structure when combined with the 2 integrals 
over the rigid body surfaces captures the near resonant 
response of the multi-column system both spatially and 
temporally. Thus )(G is completely unaffected by 
changes in the )f,f( 21  pair as long as the 
sum )ff(2 21  is unaltered. Any change in the QTF 
with constant must arise because of variations in the 
source term )y,x(f with the choice of the frequency pair.  

What is the nature of this source term )y,x(f ? It consists 
of simple products of linear components at frequencies 

)f,f( 21 , each linearly diffracted by the cylinder array. At 
frequencies well below 1f =0.1Hz, the linear response is 
not significantly modified from that of the incident field, 
see Figure 2. With 1f2 =0.126Hz, the 2nd order sum 
interactions drive the lowest near-resonant mode for the 
array. Thus, the array is compact in terms of linear 
diffraction for each of the linear components, pairs of 
which efficiently couple quadratically to the structure, 
because these linear waves are of the order of 4x longer. 
Thus, the product ‘source terms’ cannot vary 
significantly across the array depending on the precise 
values of the pair )f,f( 21 . The only significant spatial 
variation in the linear waves will be the local distortion 
in the vicinity of each column. This will be similar to a 
steady potential flow past each column, dependent on the 
size of the columns rather than the wavelength. 
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Thus, neither the Green’s function nor the source term 
are strong functions of )ff(2 21  with 

)ff(2 21 fixed. Hence the calculated QTFs, being 
the solution to the integral equation driven by the free-
surface integral, cannot vary significantly with the 
distance away from the leading diagonal.  

It should be stressed that this flatness of the contribution 
of the the free-surface integral to the overall second-order 
QTFs can only be expected to occur for output 
frequencies corresponding to the lowest first one or two 
near-trapped modes. Only when the corresponding 
individual linear waves within the 2nd order pair are both 
long compared to the scattering array but the 2nd order 
response ‘fits’ within the array will the simple argument 
work.

There is still the contribution to the QTFs from the 
scattering of the incident second order sum potential to 
consider. Since the sum frequency is the same for all 
appropriate linear pairs and this frequency term which 
controls the efficiency of scattering, then the resultant 
scattered field is likely to be close to independent of the 

distance for the frequency pair. This requires that the 
array is relatively compact on a wavelength 
corresponding to )kk( 21 , possibly a more stringent 
requirement than for the free-surface integral 
contribution.  

The relative contributions of the free-surface integral and 
the second-order incident component to the overall sum 
potential will depend on water depth, and this is currently 
being examined. However, we believe that both 
contributions to the 2nd order sum potential term should 
satisfy our Newman-type approximation. 

THE PHYSICAL SIGNIFICANCE OF LARGE QTFS 
AND NEAR-TRAPPING AT 2ND ORDER 

We conclude by presenting the predicted surface 
elevation time history to 2nd order between the rear two 
legs for a focussed wave group of linear crest elevation 
of 11m incident on the structure. For this case, the peak 
of the Gaussian spectrum is located at Pf =0.07Hz, close 
to one half of the second-order trapping frequency. The 
Gaussian spectrum for the wave group is chosen so it 
resembles the peak of a JONSWAP shape without the 
high frequency tail. For more details see Walker et al. 
2007. 
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FIGURE 7. Predicted surface elevation between the rear 
legs of the structure for an 11m incident focused wave 
group : ••••• (1); ------ (2+); ─── (1+2).

The incident wave is large but perhaps typical of those of 
interest in design. The free-surface is predicted to reach 
over 30m above mean sea level – 3  the amplitude of the 
incoming wave - an elevation of concern for water 
impact with the deck of a platform. Thus, second-order 
near-trapping seems to be important in terms of water 
projection to very high levels for structures with closely 
spaced large volume legs. The implications for setting 
deck elevations in design are clear.  
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