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INTRODUCTION

Studies on the behavior of large floating structures have been motivated by the design of platforms
for various purposes. At present, there exists an extensive literature on hydroelastic analysis of the
floating platforms [1]. In mathematical modelling, such platforms are often treated as thin elastic
plates. Most authors assumed a flat seabed for their hydroelastic analysis of floating platforms. In
reality, the seabed is not uniform in depth.

To our knowledge, the consideration of a varying water depth was made only for diffraction prob-
lem, by solving the linear hydroelastic problem for a single frequency [2-4]. A floating thin elastic
plate on shallow water of variable depth is considered in this paper. This problem has been chosen
because the sea-bottom effects become more significant in shallow water, than that in deep water (see,
for example, [4)]. Proposed method may be used for any unsteady 2D problem of linear shallow-water
theory, but here the motion of the elastic beam plate is considered for a travelling localized wave.
The solution of this problem for a flat bottom was given in [5]. Unsteady response of an elastic beam
floating on a shallow water of uniform depth under external load was considered in [6].

MATHEMATICAL FORMULATION

An elastic beam of width 2L floats on the surface of an inviscid incompressible fluid layer. The
surface of the fluid that is not covered with the plate is free. The fluid region .S is divided into three
parts: Sy (|z| < L), Se (x < —L), S3 (x > L), where x is the horizontal coordinate. Without the
plate, the fluid depth is equal to H(x) in S, and the fluid depths in the left and right hand domains
of constant depth Se and S5 are equal to Hy and Ho, respectively. The fluid depth is assumed to be
continuous, so that H(—L) = Hj, and H(L) = Hy. With the plate, the fluid depth in S} is equal
to h(x) = H(x) — d, where d is the draft of the plate. It is assumed that the maximal depth of
the fluid is small in comparison with the horizontal dimension of the plate, and the shallow water
approximation is used. The velocity potentials describing the fluid motion in the regions S; are
denoted by ¢;(z,t) (j = 1,2,3), where ¢ is time.

A deflection of an elastic plate w(z,t) is described by the equation:
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where D is the flexural rigidity of the plate; m is the mass per unit length of the plate; p is the fluid
density, and g is the gravity acceleration. The draft of the plate is equal d = m/p.

According to linear shallow-water theory, the following relation is valid:
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In the free-water regions, the velocity potentials ¢o(x,t) and ¢3(z,t) satisfy the equations
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The displacements of the free surface na(z,t) and n3(x,t) are determined in the regions Sy and S3
from the relations
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If |x| = L, the matching conditions (continuity of pressure and mass) should be satisfied:
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As it is noted that elevation of water surface is not continuous on the boundaries between region
S1 and regions Sy, S3. At the edges of the beam, the free-edge conditions are satisfied, which imply
that the bending moment and shear force are equal to zero: 9?w/0x? = 93w/dx® =0 at |z| = L.

It is assumed, that at the initial time the plate and fluid in the regions S; and S3 are at rest.
In region Ss, the localized displacement of the free surface no(x — /gHit) travels to the right. The
function 79(&) is different from zero only at || < ¢. At ¢ = 0 the displacement reaches the left edge
of the plate and the plate begins to undergo a complex bending motion in response to the incoming
wave. Consequently, the initial conditions have the form:
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=0, n2=mn(x), 5 = —gno(r) (t=0). (5)

Non-dimensional variables are used below: L is taken as the length scale and \/L/g as the time
scale.

MODE EXPANSIONS
The beam deflection is sought in the form of an expansion in the eigenfunctions of vibrations of a

free-edges beam in vacuum
o0

w(z,t) = Z an ()W (z). (6)
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Here the functions a,(t) are to be determined and the functions W, (x) are solutions of the spectral
problem:

W) =AW, (jz| < 1), Wi, =Wap1 =0 (x=0), W/=W/"=0 (jz]=1).
The prime denotes differentiation with respect to 2. These solutions have the form

Wo =1/V2, Wap = Day[cos(Aanz) + Say, cosh(Agn)],

W1 =1/3/2x, Wapy1 = Dopyi[sin(Az2n117) + S2n41sinh(Aopy12)],

where S,, = cos A,/ cosh A, and D,, = 1//1+ (—=1)»S2. The eigenvalues of A, are found from the
equation tan A\, + (—1)"tanh A, =0 (n >2), Mg = A1 = 0. The functions W, (x) form a complete
orthogonal system for which
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where 0,,,,, is the Kroneker symbol.

We substitute expansion (6) into (1) and initial conditions (5), multiply the obtained relations
by W,,(x), and integrate them over = from -1 to 1. Using the properties of the functions W, (z), we
obtain the set of ordinary differential equations (ODE’s)
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and an overdot denotes differentiation with respect to time.
A solution for ¢4 (z,t) is sought in the form

o0

Pr(x,t) = > an(t)Un(x) + q(a, t),

n=0

where the functions W, (x) satisfy the equation

U (z) = =Va(z)/h(z), V;

n
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and have the form

T Vo(€) x V322
v, :—/ &, Vo=-2, n=Y2r
(:U) 1 h(é—) 6 0 \/5 1 2\/§
Vo, = l)?gn [sin(Aapx) + Sop, cosh(Aopz)],  Vopt1 = Dont1
2n

pv— [San+1 cosh(Agpt12) — cos(Agpt12)].

n

The function ¢(x,t) is to be determined. According the Eq.(2) and the initial conditions (5), the
function ¢(x,t) has the form

oa.t) = Q)u(t) +v(t), Q)= [ hTHOdE,  u(0) = v(0) =0.

The functions u(t) and v(t) are determined from the matching conditions (4)
The solution for ¢o(z,t) is sought in the form
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where ¢ (x,t) is the velocity potential of incident wave and is determined from the equation d¢g/dx =
no/+v/Hi. According to Eq.(3), the solution for ¢ (x,t) has the form

[ Al D)/VE A+, —(1+ VH) <@ < -1,
(e, t) = )

r < —(14 Hyt),

where the function A(§) is unknown and should be determined.

In a similar manner, we can seek the solution for ¢3(z,t)

pa(a 1) = { B(t — (z = 1)/vH),

1 <x <1+ +/Hst,
0, x> 14 Hat,
where the function B(£) is to be determined.

Using the matching conditions (4), we have

A= (u+ aoRo — a1R1)/VHi — aft),

B = (apRo + a1 Ry — u)/\/Ho.
Here R, = V,,(1), Ry =1/v2, R1 = V1.5/2, R, =0 at n > 2; a(t) = no(—1,1).
The functions fp,(t) in (7) have the form
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The final set of ODE’s has the form
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Once the a,(t) and u(t) are determined, we can find all characteristics of motion of the fluid and

the elastic beam. For example, the displacement of the free surface of the fluid in region Ss can be
written in view of (8) as n2(x,t) = no(z,t) + ((x,t), where

Clat) = { A +1)/VH +1),

—(1 + \/Hlt) <z < -1,
0

r < —(1+4 Hit).
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In region S5, we have

ol “Blt—(@-1)/VI), 1<z<1+Vt,
ns(x,t) = 0, x> 1+ /Hat.

The functions A(€) and B(€) are determined from (9).

ENERGY RELATION
Total energy of the incident wave FEjy is equal to

-1
Ey = / ne(x)dz.
—(142¢)

This energy transfers to the oscillations of the elastic beam and reflected and transmitted surface
waves. At t — oo, the beam oscillations decay and the beam returns to its original state. The energy
of reflected wave motion E,(t) is

B = 200 ) = V[ A%(6)d
(0= [y Cl e = VE [ A2

The energy of transmitted wave motion Fy(t) is

1+ Hat
() = [

(e, )z = VI [ BH©)c
0

1

Because the dissipation energy is absent in the considered problem, we have then

Jim [E, () + Ey(1)] = Eo.

DISCUSSION

The beam deflections and wave motions of the fluid for various bottom topographies and the
forms of the incident wave have been calculated and will be presented at the Workshop. The local
bed elevations cause more prolonged oscillations of the elastic beam and pronounced reflected wave
motion.
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