
22nd IWWWFB, Plitvice, Croatia 2007

181

22nd IWWWFB, Plitvice, Croatia 2007

TIME-DEPENDENT HYDROELASTIC RESPONSE OF AN ELASTIC PLATE

FLOATING ON SHALLOW WATER OF VARIABLE DEPTH

I.V. Sturova

Lavrentyev Institute of Hydrodynamics, Novosibirsk, 630090, RUSSIA

E-mail: sturova@hydro.nsc.ru

INTRODUCTION

Studies on the behavior of large floating structures have been motivated by the design of platforms
for various purposes. At present, there exists an extensive literature on hydroelastic analysis of the
floating platforms [1]. In mathematical modelling, such platforms are often treated as thin elastic
plates. Most authors assumed a flat seabed for their hydroelastic analysis of floating platforms. In
reality, the seabed is not uniform in depth.

To our knowledge, the consideration of a varying water depth was made only for diffraction prob-
lem, by solving the linear hydroelastic problem for a single frequency [2-4]. A floating thin elastic
plate on shallow water of variable depth is considered in this paper. This problem has been chosen
because the sea-bottom effects become more significant in shallow water, than that in deep water (see,
for example, [4)]. Proposed method may be used for any unsteady 2D problem of linear shallow-water
theory, but here the motion of the elastic beam plate is considered for a travelling localized wave.
The solution of this problem for a flat bottom was given in [5]. Unsteady response of an elastic beam
floating on a shallow water of uniform depth under external load was considered in [6].

MATHEMATICAL FORMULATION

An elastic beam of width 2L floats on the surface of an inviscid incompressible fluid layer. The
surface of the fluid that is not covered with the plate is free. The fluid region S is divided into three
parts: S1 (|x| < L), S2 (x < −L), S3 (x > L), where x is the horizontal coordinate. Without the
plate, the fluid depth is equal to H(x) in S1, and the fluid depths in the left and right hand domains
of constant depth S2 and S3 are equal to H1 and H2, respectively. The fluid depth is assumed to be
continuous, so that H(−L) = H1, and H(L) = H2. With the plate, the fluid depth in S1 is equal
to h(x) = H(x) − d, where d is the draft of the plate. It is assumed that the maximal depth of
the fluid is small in comparison with the horizontal dimension of the plate, and the shallow water
approximation is used. The velocity potentials describing the fluid motion in the regions Sj are
denoted by φj(x, t) (j = 1, 2, 3), where t is time.

A deflection of an elastic plate w(x, t) is described by the equation:
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where D is the flexural rigidity of the plate; m is the mass per unit length of the plate; ρ is the fluid
density, and g is the gravity acceleration. The draft of the plate is equal d = m/ρ.

According to linear shallow-water theory, the following relation is valid:
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In the free-water regions, the velocity potentials φ2(x, t) and φ3(x, t) satisfy the equations
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The displacements of the free surface η2(x, t) and η3(x, t) are determined in the regions S2 and S3

from the relations
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As it is noted that elevation of water surface is not continuous on the boundaries between region
S1 and regions S2, S3. At the edges of the beam, the free-edge conditions are satisfied, which imply
that the bending moment and shear force are equal to zero: ∂2w/∂x2 = ∂3w/∂x3 = 0 at |x| = L.

It is assumed, that at the initial time the plate and fluid in the regions S1 and S3 are at rest.
In region S2, the localized displacement of the free surface η0(x − √

gH1t) travels to the right. The
function η0(ξ) is different from zero only at |ξ| < c. At t = 0 the displacement reaches the left edge
of the plate and the plate begins to undergo a complex bending motion in response to the incoming
wave. Consequently, the initial conditions have the form:

w = η3 =
∂φ1

∂t
=
∂φ3

∂t
= 0, η2 = η0(x),

∂φ2

∂t
= −gη0(x) (t = 0). (5)

Non-dimensional variables are used below: L is taken as the length scale and
�

L/g as the time
scale.

MODE EXPANSIONS

The beam deflection is sought in the form of an expansion in the eigenfunctions of vibrations of a
free-edges beam in vacuum

w(x, t) =
∞
�

n=0

an(t)Wn(x). (6)

Here the functions an(t) are to be determined and the functions Wn(x) are solutions of the spectral
problem:
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The prime denotes differentiation with respect to x. These solutions have the form
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equation tanλn + (−1)n tanhλn = 0 (n ≥ 2), λ0 = λ1 = 0. The functions Wn(x) form a complete
orthogonal system for which
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where δmn is the Kroneker symbol.
We substitute expansion (6) into (1) and initial conditions (5), multiply the obtained relations

by Wm(x), and integrate them over x from -1 to 1. Using the properties of the functions Wn(x), we
obtain the set of ordinary differential equations (ODE’s)
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and an overdot denotes differentiation with respect to time.
A solution for φ1(x, t) is sought in the form
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The function q(x, t) is to be determined. According the Eq.(2) and the initial conditions (5), the
function q(x, t) has the form

q(x, t) = Q(x)u(t) + v(t), Q(x) =
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The functions u(t) and v(t) are determined from the matching conditions (4).
The solution for φ2(x, t) is sought in the form

φ2(x, t) = φ0(x, t) + ψ(x, t), (8)

where φ0(x, t) is the velocity potential of incident wave and is determined from the equation ∂φ0/∂x =
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where the function A(ξ) is unknown and should be determined.
In a similar manner, we can seek the solution for φ3(x, t)
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Using the matching conditions (4), we have
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The functions fm(t) in (7) have the form
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The final set of ODE’s has the form
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Once the an(t) and u(t) are determined, we can find all characteristics of motion of the fluid and
the elastic beam. For example, the displacement of the free surface of the fluid in region S2 can be
written in view of (8) as η2(x, t) = η0(x, t) + ζ(x, t), where

ζ(x, t) =

�

−Ȧ((x+ 1)/
√
H1 + t), −(1 +

√
H1t) < x < −1,

0, x < −(1 +
√
H1t).
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(ȧ1R1 − ȧ0R0 − u)−

∞
�

n=0

änΛn + 2α(t)

�

.

Once the an(t) and u(t) are determined, we can find all characteristics of motion of the fluid and
the elastic beam. For example, the displacement of the free surface of the fluid in region S2 can be
written in view of (8) as η2(x, t) = η0(x, t) + ζ(x, t), where

ζ(x, t) =

�
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In region S3, we have

η3(x, t) =

�

−Ḃ(t− (x− 1)/
√
H2), 1 < x < 1 +

√
H2t,

0, x > 1 +
√
H2t.

The functions Ȧ(ξ) and Ḃ(ξ) are determined from (9).

ENERGY RELATION

Total energy of the incident wave E0 is equal to

E0 =

� −1

−(1+2c)
η2
0(x)dx.

This energy transfers to the oscillations of the elastic beam and reflected and transmitted surface
waves. At t→ ∞, the beam oscillations decay and the beam returns to its original state. The energy
of reflected wave motion Er(t) is

Er(t) =

� −1

−(1+
√

H1t)
ζ2(x, t)dx =

�

H1

� t

0
Ȧ2(ξ)dξ.

The energy of transmitted wave motion Et(t) is

Et(t) =

� 1+
√

H2t

1
η2
3(x, t)dx =

�

H2

� t

0
Ḃ2(ξ)dξ.

Because the dissipation energy is absent in the considered problem, we have then

lim
t→∞

[Er(t) + Et(t)] = E0.

DISCUSSION

The beam deflections and wave motions of the fluid for various bottom topographies and the
forms of the incident wave have been calculated and will be presented at the Workshop. The local
bed elevations cause more prolonged oscillations of the elastic beam and pronounced reflected wave
motion.
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     Analysis of a planing hull is normally done by neglecting gravity. However, gravity matters. 
The gravity effects on a prismatic hull in steady motions have been studied by Sun and Faltinsen 
(2007) by using a 2D+t theory and a two-dimensional Boundary Element Method. In this paper, 
we will generalize this approach to study the loadings on a planing hull in unsteady motions at a 
moderate planing speed.
     The forward speed of the planing hull is U. Forced oscillations in heave or pitch are given to 
the vessel. We assume no incident waves. An analysis similar as in Maruo and Song (1994) is 
followed. The space-fixed coordinates xyz and the body-fixed coordinates XYZ are defined in 
Fig. 1. The xy plane is in the calm water surface and the z-axis is pointing upwards. The planing 
hull is moving in the negative x-direction. The origin of XYZ is fixed at the centre of gravity 
(COG) of the hull. The X-axis is pointing to the stern and the Y-axis is towards the starboard. 
The instantaneous trim angle  is defined positive when the bow is up. The position of the COG 
in the space-fixed coordinates is (xg, 0, zg). The body-fixed coordinates can be related to the 
space-fixed coordinates by X = (x–xg)cos  – (z–zg)sin  ; Y = y; Z = (x–xg)sin +(z–zg)cos .
     A velocity potential (x,y,z,t) is introduced to describe the water flow around the vessel. The 
velocity potential satisfies three-dimensional Laplace equation. Fully nonlinear free surface 
conditions and exact body boundary conditions are satisfied in three dimensions. Then we 
introduce the slenderness ratio as  = d/L, where d is the draft and L is the length of the hull. By 
using slender body assumption, we have / x~O( ), /  ~O(1), / z~O(1). Further, we have / X
~O( ) , / Y~O(1), / Z ~O(1) and we assume that the trim angle is small. Neglecting the terms 
with order O( 2) in the governing equation and the boundary conditions, one can obtain the 2D 
Laplace equation and boundary conditions in a cross- plane given by  

2 2

2 2 0
y z

       (1) 

3 5X ZN U N U X
N

 on the hull surface  (2) 

2 21 0
2 y z g

t
  at ( , , )z x y t     (3) 

0
t y y z

 at ( , , )z x y t    (4) 

where g is the acceleration of gravity and the normal vector N=(NX, NZ) is the 2D normal vector 
in the cross-plane. For a prismatic hull, we have NX=0. The unsteady motions are described by 
the heave 3 = 3asin( t) or the pitch 5 = 5asin( t) for t 0 . The heave is positive when it is 
upward and the pitch is positive when the bow is up. The dot above 3, 5 means time derivative. 
In addition, we have far-field conditions.
     The Boundary Element Method described in Sun and Faltinsen (2007) is used to solve the 2D 
problem described by Eqs. (1)-(4) . In the BEM, the thin jet along the body surface is cut off. 
When the water flow separates from the knuckles of the V-shaped section, a flow separation 
model similar as in Zhao et al. (1996) is applied. Thin sprays will rise up along both sides of the 
section after separation and turn over to hit the water surface underneath. To avoid wave breaking, 
the overturning thin spray is cut away before it hits the underlying water. The numerical schemes 
to cut the thin jet and to cut the thin spray are described in detail in Sun and Faltinsen (2007). 
However, numerical challenges are in particular found for the present unsteady problems.       




