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Introduction

Most of computations for wave-body interactions in
the time domain are based on the panel methods.
For body-exact problems, repanelization of the
instantaneous wetted body surface is required at
each time step. Based on the work of Qiu
and Hsiung (2002) and Qiu et al. (2004), the
body-exact problem has been solved in the time
domain with the panel-free method and exact
geometry. In the present study, the body boundary
condition is imposed on the instantaneous wetted
surface exactly at each time step. The free
surface boundary is assumed linear so that the
time-domain Green function can be applied. The
body geometry is represented by Non-Uniform
Rational B-Spline (NURBS) surfaces. At each time
step, the instantaneous wetted surface is obtained
by trimming the entire body surface. With
the panel-free method, the body-exact problems
are solved without involving repanelization of the
wetted hull surface at each time step.

For illustration, hydrodynamic forces on a
submerged sphere undergoing large amplitude
motion were computed and compared with
analytical solutions. The computation was also
extended to a vertical cylinder under prescribed
motion.

Mathematical Formulation

It is assumed that the fluid is incompressible,
inviscid and free of surface tension and that
the flow is irrotational. The velocity potential,
φ(P (x, y, z); t), satisfies the following governing
equation, boundary conditions, far-field conditions
and initial conditions:

∇2φ = 0 in Ω (1)

∂2φ
∂t2 + g ∂φ∂z = 0 on Z = 0, t > 0

∇φ · n = Vn − ∂φI
∂n on Sb(t), t > 0

∇φ, ∂φ∂t → 0 at S∞, t > 0

φ = 0, ∂φ
∂t = 0 t = 0

where φI(P (x, y, z); t) is the incident wave
potential, g is the gravitational acceleration,
Ω is the computational domain, Sb(t) is the
instantaneous wetted body surface, S∞ is the
infinite boundary, t is time, and n is the unit inner
normal vector pointing into the body surface from
the water.

Since the linear free surface boundary condition
is satisfied, the transient Green function can be
applied for the initial boundary value problem.

Based on the work of Qiu and Hsiung (2002),
the velocity potential, φ(P ; t), can be obtained
from the desingularized integrals in terms of source
distribution as follows:

φ(P ; t) =


Sb(t)

G1


σ(Q; t)− γ(Q; t)

σ(P ; t)
γ(P ; t)


dS

+ 2


Sb(t)

σ(Q; t)G2dS + φ0(t)
σ(P ; t)
γ(P ; t)

+
 t

0

dτ



Sb(τ)

σ(Q; τ)FdS

− 1
g

 t

0

dτ



Γ(τ)

σ(Q; τ)FVΓnVndΓ (2)

where G1(P,Q) = − 1
4π (

1
r +

1
r1
), G2(P,Q) = 1

4π
1
r1
,

F (P,Q; t − τ) is the wave term of the Green
function, VΓn is the velocity of the instantaneous
waterline, Γ(τ), in the direction of nΓ, nΓ is the
unit normal of Γ(τ) on the free surface, γ(P ; t) is
the source distribution on the instantaneous wetted
surface Sb(t) which makes the instantaneous body
surface an equipotential surface of potential φ0(t).
It can be seen that the first integral in the right
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hand side (RHS) of Eq. (2) is zero when P coincides
with Q. Therefore, the singularity in the integral
equation due to the Rankine term is removed.

The source strength can be solved from the
following desingularized equation:

∂φ(P ; t)
∂nP

= −σ(P ; t)

+


Sb(t)


σ(Q; t)

∂G1

∂nP
− σ(P ; t)

∂G1

∂nQ


dS

+ 2


Sb(t)

σ(Q; t)
∂G2

∂nP
dS

+
 t

0

dτ



Sb(t)

∂F

∂nP
σ(Q; τ)dS

− 1
g

 t

0

dτ



Γ(τ)

σ(Q; τ)
∂F

∂nP
VΓnVndΓ(3)

Note that the second term in RHS of Eq. (3) is
zero when P coincides with Q.

Since the desingularized integral equations, (2) and
(3), can be discretized over the exact geometry with
Gaussian quadrature, the next step is to accurately
compute coordinates, normals and Jacobians of
Gaussian points on the instantaneous wetted
surface. The wetted surface Sb(t) can be obtained
by trimming the master body surface below the
water plane (Z = 0) at each time step. In order
to automate the trimming process, it is desirable
to describe the master surface by mathematical
representation. In this work, the body geometry
is represented by NURBS surfaces.

With the representation of the exact master surface
by NURBS, a surface/surface intersection problem
will then be solved to find the instantaneous wetted
portion. A bisection scheme is applied to determine
the waterline in the uv-plane. It is assumed that
there are no self-intersecting waterlines and the
waterline intersects with the boundary of a patch
only at two points.

The force on the body is computed by integrating
the pressure over the instantaneous wetted surface
Sb(t). The temporal and spatial derivatives of φI

can be obtained from the incident wave potential.
The velocities, ∇φ, are computed based on the
work of Bingham and Maniar (1996) from the
velocity terms normal and tangential to the body
surface, i.e, ∇φ = ∇φ · n + ∇φ · t, where n and
t are the normal vector and the tangential vector
of a point on the body surface, respectively. The
temporal derivative, ∂φ

∂t , is evaluated based on the

work of Dameier (1999) as

(
∂φ

∂t
)n =

φn − φn−1

∆t
−U · ∇φn − un

t · {φn
uv} (4)

where the superscript n denotes the nth time step,
U is the body moving speed, ut = {ut, vt} denotes
the velocity vector of a Gaussian point which can
be determined by un

t = (un − un−1)/∆t and vn
t =

(vn − vn−1)/∆t, and ∆t is the time step.

After the temporal and spatial derivatives of φ are
determined, the pressures on Gaussian points can
calculated and forces on the body surface can be
obtained.

Numerical Results

The hydrodynamic forces on a submerged sphere
undergoing large amplitude motion were first
computed and compared with the analytical
solutions by Wu (1994). Forces on a vertical
cylinder with prescribed heave motions are then
presented and compared with numerical results
based on the linear solution.

Submerged Sphere: The submerged sphere
was described by eight NURBS surfaces. Each
NURBS surface is formed by a 4 × 4 control net
and B-Splines with degrees of 3 in the u- and
v-directions. In the computation, the submerged
depth, h, measured from the water surface to the
centre of the sphere is three times of the radius
of the sphere (R). The sphere is under pure heave
motions. The time step was chosen as 0.1 seconds.
The computed heave force, nondimensionalized
as F  = F/( 4

3ρπR3), were compared with the
analytical solutions by Wu (1994) for various
motion amplitudes, η/R=0.5, 1.0 and 1.5, at kR =
0.1 and kR = 1.0, where ρ is the density of fluid, η
is the heave motion amplitude, and k is the wave
number.

Figure 1 shows the computed heave forces in
comparison with the analytical solutions of Wu
(1994) for η/R=1.0 at kR=0.1. Figures 2 and 3
present the results for η/R=0.5 and 1.0 at kR =
1.0. With the motion amplitude increased, greater
discrepancies are shown between the numerical
results and the analytical solutions. Note that
the analytical solution of Wu (1994) was based
on the multipole expansion and was obtained by
truncating the infinite series. It is thought that the
discrepancies are due to the truncated error in the
analytical solution.
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Figure 1: Heave force at η/R=1.0 and kR=0.1

-2

-1

 0

 1

 2

 3

 0  5  10  15  20  25  30  35

N
on

di
m

en
si

on
al

 F
3

Time (s)

PFM
Analytical (Wu, 1994)

Figure 2: Heave force at η/R=0.5 and kR=1.0

Cylinder: The computation was then performed
for a vertical cylinder under prescribed motion.
The draft of the cylinder at rest is T . The
ratio of radius R to T is given as 2.0. The
vertical velocity of the cylinder is prescribed to be
V (t) = aω sin(ωt) with the body displacement of
z(t) = −a cos(ωt) where a is the heave motion
amplitude. Computations were carried out for
various amplitude ratios, a/T=0.05, 0.1 and 0.15.
In the computations, 576 Gaussian points (192
on the bottom and 384 on the side surface) were
automatically distributed on the instantaneous
wetted surface of the cylinder at each time step.
The time step was chosen as 0.05 seconds and
ω = π/2. The computed heave forces minus
the hydrostatic forces are nondimensionalized as
F  = F/(ρgR2a) and compared with the linear
solution in the time domain. The linear results
were computed from the impulse response function
by the panel-free method (Qiu and Hsiung, 2002).
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Figure 3: Heave force at η/R=1.0 and kR=1.0

In Fig. 4, the computed heave force is compared
with the linear solution for a/T = 0.05. As we
can see, the results follow closely with the linear
solution for relatively small amplitude a. For larger
amplitudes, a/T = 0.1 and a/T = 0.15, the
heave forces are compared with the linear solutions
in Fig. 5. With the amplitude a increased,
differences at peaks and troughs tend to be larger.
The nonlinear values of the heave forces by the
body-exact solution are smaller than the linear
solutions.

Figure 6 shows the components of the vertical
force on the cylinder including hydrostatic, inertial
(-∂φ/∂t) and quadratic (−|∇φ|2/2) components for
the case of a/T = 0.10. The quadratic term
is primarily at the second harmonic. The total
force along with the hydrostatic and inertial terms
mainly oscillate at the forcing frequency.
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Figure 4: Heave force at a/T=0.05, ω = π/2
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ratio of radius R to T is given as 2.0. The
vertical velocity of the cylinder is prescribed to be
V (t) = aω sin(ωt) with the body displacement of
z(t) = −a cos(ωt) where a is the heave motion
amplitude. Computations were carried out for
various amplitude ratios, a/T=0.05, 0.1 and 0.15.
In the computations, 576 Gaussian points (192
on the bottom and 384 on the side surface) were
automatically distributed on the instantaneous
wetted surface of the cylinder at each time step.
The time step was chosen as 0.05 seconds and
ω = π/2. The computed heave forces minus
the hydrostatic forces are nondimensionalized as
F  = F/(ρgR2a) and compared with the linear
solution in the time domain. The linear results
were computed from the impulse response function
by the panel-free method (Qiu and Hsiung, 2002).
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In Fig. 4, the computed heave force is compared
with the linear solution for a/T = 0.05. As we
can see, the results follow closely with the linear
solution for relatively small amplitude a. For larger
amplitudes, a/T = 0.1 and a/T = 0.15, the
heave forces are compared with the linear solutions
in Fig. 5. With the amplitude a increased,
differences at peaks and troughs tend to be larger.
The nonlinear values of the heave forces by the
body-exact solution are smaller than the linear
solutions.

Figure 6 shows the components of the vertical
force on the cylinder including hydrostatic, inertial
(-∂φ/∂t) and quadratic (−|∇φ|2/2) components for
the case of a/T = 0.10. The quadratic term
is primarily at the second harmonic. The total
force along with the hydrostatic and inertial terms
mainly oscillate at the forcing frequency.
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Figure 5: Heave forces at a/T=0.1 and 0.15, ω =
π/2
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Figure 6: Heave force components at a/T = 0.1,
ω = π/2

Conclusions

The body-exact problem has been solved in the
time domain by the panel-free method. In
the present study, the body boundary condition
is imposed on the instantaneous wetted surface
exactly at each time step. The free surface
boundary condition is linearized so that the
time-domain Green function can be applied. The
body geometry is represented by NURBS surfaces.
At each time step, the instantaneous wetted surface
is obtained by trimming the entire body surface.
Gaussian points are automatically distributed over
the wetted surface. With the panel-free method,
the body-exact problem is solved without involving
repanelization of the instantaneous wetted hull
surface at each time step.

The computations have been carried out to

a submerged sphere and a vertical cylinder
under prescribed large-amplitude motion. The
hydrodynamic forces on the submerged sphere
agree well with the analytical solutions. The
computed forces on the vertical cylinder are
compared with numerical results from the impulse
response function. For small amplitude motion,
the body-exact solutions by the panel-free method
follow closely with the linear solution. With the
amplitude increased, the nonlinear values from the
body-exact solution are smaller than the linear
results.

Studies are being carried out to compute motions
and forces on free floating bodies in waves with and
without forward speed.

Acknowledgments

This work was supported by the Natural
Sciences and Engineering Research Council of
Canada. Useful discussions with Prof. G.X.
Wu at University College London are very much
appreciated.

References

Bingham, H.B. and Maniar, H.D. (1996).
Computing the Double-Body m-terms Using
a B-spline Based Panel Method. Proceedings of
the 11th International Workshop on Water Waves
and Floating Bodies, Hamburg.

Danmeier, D.G. (1999). A Higher-Order Panel
Method for Large-Amplitude Simulation of Bodies
in Waves. Ph.D. Thesis, Massachusetts Institute of
Technology, Massachusetts.

Qiu, W.,Chuang, J.M. and Hsiung, C.C. (2004).
Numerical Solution of Wave Diffraction Problem
in the Time Domain with the Panel-Free
Method. Journal of Offshore Mechanics and Arctic
Engineering, Vol. 126, No. 1, pp. 1-8.

Qiu, W. and Hsiung, C.C. (2002). A Panel-Free
Method for Time-Domain Analysis of Radiation
Problem. Ocean Engineering, Vol. 29, No. 12,
pp. 1555-1567.

Wu, G.X. (1994). Hydrodynamic Forces on a
Submerged Sphere Undergoing Large Amplitude
Motion. Journal of Ship Research, Vol. 38, No.
4, pp. 272-277.




