22" |WWWEFB, Plitvice, Croatia 2007

Nearfield and farfield boundary-integral representations of free-surface flows

Francis Noblesse!(francis.noblesse@navy.mil), Chi Yang?3, Rommel Espinosa?

L' NSWCCD, 9500 MacArthur Blvd, West Bethesda, MD 20817, USA
2 College of Science, George Mason University, Fairfax, VA 22030, USA (cyang@gmu.edu)
3 Shanghai Jiao Tong University, Shanghai, China

1. Green’s classical potential representation

Consider a finite 3D region D bounded by a closed surface 3. The divergence theorem applied
to the function ¢ VG — G V¢ yields the classical Green identity

/dV(ngVQG—GVQ(b):/dA(Gn-ngﬁ—ngn-VG) (1)
D ¥

where dV and d.A stand for differential elements of volume or area of the region D or the boundary
surface ¥, and n is a unit vector that is normal to ¥ and points inside D. For a function ¢ = ¢(x)
that satisfies the Laplace equation V?¢ = 0 within D, and a Green function G' = G(x;X) that
satisfies the Poisson equation V2G = §(z — 7) §(y — 9) 6(z — Z) in D, or in a larger region that
includes D, (1) yields Green’s classical boundary-integral representation

6*55:/ dA(Gn-Vé—én-VQ) (22)
B > 1 inside D

with C:/ dVé(x—%)é(y—g)é(z—E):{1/2}iffilies{onZ } (2b)
D 0 outside D

Here and below, x = (z,y,2) and ¢ are nondimensional in terms of a reference length L and
velocity U, i.e. one has x = X/L and ¢ = ®/(UL). In (2b), the value C' = 1/2 at a point
x of the boundary surface > assumes that 3 is smooth at x. Green’s representation (2) defines
the potential ¢ = ¢(x) at a flow-field point X in terms of boundary distributions of sources (with
strength n - V¢ ) and normal dipoles (strength ¢ ), and involves a Green function GG and the first
derivatives of G'. In (2) and below, x stands for a flow-field point, i.e. a point inside a 3D flow
region D, and x is a point of the boundary surface 3. of the flow region, i.e. a boundary point.

The general solution of the Poisson equation V2G = §(x — x) 4] ( y)6(z — 2) is given by
AnG=—-1/r+ H=S+H with r= \/a: z) —U)?+(2—2)? 3)

r is the distance between x = (z,y,2) and X = (Z,y,2), and H(x ;X ) stands for a function
that is harmonic within the flow region D (or a larger region that includes D). Thus, the singular
component .S and the harmonic component H in (3) satisfy

V23S =4nd(x —2)6(y —§)d(2 —Z) and V?H =0
Application of Green’s identity (1) to the potential ¢ and the functions .S or H yield
4wé$:/dA(sn-v¢—¢n-v5) oz/dA(Hn-v¢—¢n-VH) )
) b

2. Application to free-surface flows in deep water

The boundary surface 3 and the Green function GG in Green’s relations (2) and (4) are generic.
These generic relations are now applied to free-surface flows about ships or offshore structures in
deep water. The closed boundary surface 32 in (2a) consists of > = X5 U ¥g U X, . Here, Xp
stands for the mean wetted hull of a rigid body (ship or structure) or, more generally, a control
surface that encloses a rigid body; >Jg is the portion of the mean free-surface plane located outside
the “body” surface ¥ ; and Yo, joins Xy and X p in the farfield. The unit vector n = (n*, n¥,n*)
is normal to the boundary surface > and points into the flow domain, as already noted. Thus,

= (0,0,—1) at the free surface ¥y. The Green function G in (2a) is presumed to vanish
sufficiently rapidly in the farfield to nullify the contribution of the farfield boundary surface >,
Thus, the contribution of Y is ignored, and the free surface g is unbounded. Green’s potential

representation (2a) then becomes
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Cé= dA(Gn-V¢—¢n-VG)—/ drdy (G, — G, é) )
YB o
Here, the z axis is vertical and points upward, and the mean free surface is taken as the plane
z=0. It is useful to use a Green function of the form
AnG=—1/r£1/n+H with r=\/(z —5)?2+(y—§)2+ (z +2)? (6)

H(x;x) is harmonic within the flow region D (or a larger region that includes D). Expressions
(2b) and (6) show that C' = 1 if the flow-field point X is located at the free surface >y . Thus, (2b)

becomes 1 in DU,
C={1/2}if X lies { on Xp (7)
0 outside D U X g U X

3. Local-flow and wave decomposition

The harmonic function H in the basic Green-function representation (6) can be decomposed
into a local-flow component and a wave component. Thus, a Green function of the form

ArG=—-1/r+ L+W=R+W (8)
is now considered. Here, the local-flow component L and the wave component IV are presumed to
satisfy the Laplace equations V2L = 0 and V?W = 0. The decomposition (8) is not unique. For

instance, for diffraction-radiation of regular waves by an offshore structure, a particularly simple
choice of Green function is defined in [ 1] as

R=—1/r—1/r.+2/r, W:—ierfQZ*/ dt (1—©) e~ i® (9a)
r=+vh2+272 = +h2+Z2 ,/hz—i—ZQ

where h=vX?+Y?2 X=7-=z Y=y—vy (9b)
Z=%Z-z Z,=Z+z2 Zp = Z.— o/ f?

sinh(®/o") + i sin(V/a™)
cosh(® /W) + cos(V/aW)

and —V/o"W < CW < 7. This Green function, which only involves elementary functions of real
arguments, satisfies the free-surface condition G, —f2G = 0 at z = 0 accurately in the farfield, but
only approximately (to leading order) in the nearfield. The Rankine component R involves three
elementary free-space Rankine sources: a unit source at the singular point x = (x,y, 2), a unit
source at the mirror image (x , y , —z) of x with respect to the mean free-surface plane z = 0, and
a “double” sink (strength 2) at the point (2,7, —z + ¢©/f?). This arrangement of elementary
point sources and sinks satisfies the linear free-surface boundary condition G, — f2G = 0 at
z = 0 to leading order, in both the nearfield and the farfield. The wave component is given by a
one-dimensional Fourier superposition of elementary waves e / *Z.~i® The radiation condition is
satisfied via the function © ; see [ 1,2 ]. More complicated Green functions that satisfy the linear
free-surface boundary condition everywhere (in the nearfield as well as the farfield) can be used.
These alternative free-surface Green functions are also of the form (8); see e.g. [3,4].

® = f2(X cost +Ysint) 0= with V= f2Z,  (9¢)

Using the Rankine-wave decomposition (8) of the Greeen function in (5), one obtains the
representation 47 C (;5 ngR + ¢W of the potential d) at a flow-field point x. Here, the Rankine
potential gbR and the wave potential ng correspond to the Rankine and wave components R and
W in (8), and C is given by (7). Thus, for diffraction-radiation of regular waves by an offshore
structure, the potentials of and ¢W are given by

Pt = JA(Rn-Vé —¢n-VR) + | dedy[(R; —f?R) ¢ — R(¢.— *¢)] (102)

W = AAWn-NG—¢n-VW) + | dedy[(W. = [*W)é-W (.= [*¢)]  (10b)
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Use of expressions (9) for the Rankine and wave components R and W in (10) yields ex-
pressions for the potentials o and ¢V that only involve elementary functions of real arguments.
These simple expressions for %R and ggW are given in [ 5]. Integration over the free surface >y in
(10) only needs to be performed over a finite nearfield portion of the unbounded free surface. In
particular, the terms R, — f?R and R in (10a) are O (1/p%) as p = /22 + 32 — 0.

4. A seemingly paradoxical property

The wave component I in (8) satisfies the Laplace equation V2V = 0, as already noted. It
follows from (4) that the wave potential (bW in (10) is null, i.e. one has ¢W 0. However, the wave
potential ¢ is known to become exact in the horizontal farfield; specifically, one has W~ Ang
as p = \/22+ y? — oo. This seemingly contradictory result can be explained if the unbounded
free surface XJg is divided into a finite nearfield portion X" and an unbounded farfield portion
N far Thus, the unbounded free surface i is expressed as ¥y = L UYg far - Specifically, 5 far
is taken here as the region po, < p. Let gbmar and ¢"V  stand for the contrlbutlons of the ﬁn1te
nearfield boundary surface X" = X g UX/["“"" to the Rankine and wave potentials ¢ and oW.

One has
nea'r’ ~0 and ¢near ~ 47T¢ for P < Pinner < Poo }

near’\“ 0 and ¢near ~ 4”5 for P < Pouter < p

This property is numericallly illustrated and verified here by considering a simple axisymmetric

flow generated by a pulsating point source. Specifically, consider the flow defined by the potential

¢(x) = G(a;x) with a=(0,0,—-0.1) and f=2 (12)

Here, G stands for the free-surface Green function defined by (8) and (9) with ct=1, ¢V =3,

CW = 2.3. The flow due to the pulsating source (12) is considered for the unbounded flow region

that is outside a spherical boundary surface ¥, taken as the half sphere /22 + y2+ 22 = 1 with

z < 0. The flow ¢~5 near associated with (12) is defined by (10) in terms of the flux n-V¢ at g,

the potential ¢ at X U $7°" and the pressure ¢, — f2¢ at 3. These three forcing terms,
easily evaluated from (9), are depicted in Fig.1 along the line defined by y = 0 and

x =sin(nt/2) z=—cos(mt/2) with 0 <t <1 }

(1)

r=t z=0 with 1 <¢ <18 (13)
Fig.1 shows that the pressure ¢, — f2¢ at the free surface ¥y decays rapidly as ¢ increases, 1.e. away
from the (spherical) boundary surface X5 . The “input” potential ¢ given by (12) and the Rank-
ine potential ¢%/(47) and wave potential ¢"/(47), reconstructed using the boundary-integral
representation (10), are depicted in Fig.2 and Fig.3 along the line

=1+ p)sin(wt/2) z=—(1+p)cos(nt/2) with 0 <t <t }

T =t Z=—u with t* <t <18 (14)

and t* = (2/m)cos™![ 1/ (1+ 1) ]. The line (14) is located inside the flow region, at a distance
(taken equal to 0.03 here) from the line (13).

Fig.2 depicts the potential (12) and the Rankine potential ggR/ (47) with p o, taken equal to 6 or
12 . Thus, the radius p  of the nearfield reglon 20" of the unbounded free surface is taken equal
to 6 or 12 in Fig.2. This figure shows that qﬁnear =~ 47r¢ in an inner region p < Pinner < Poo
and that gf)R vanishes rapidly for p o, < p, in accordance with (11). The radius p j;ner 0f the inner
region, roughly equal to 5 for poo = 6 or to 11 for poo = 12, increases as the radius p, of
the nearfield region X'°“" of the free surface increases, and one may presume that [ Pinner — 00
as poo — oc. Similarly, Fig.3 depicts the potential (12) and the wave potential ngW/ (47) with
P oo taken equal to 6 or 12, as in Fig.1. Fig.2 shows that gzﬁnear ~ 4m¢ in an outer region
Poo < Pouter < p and that d)nem ~ (0 in an inner region p < Pinner < Poo, N agreement with
(11). Fig.3 shows that one has pjpner =~ 1 and poyter =~ 10 for poo = 6; and pipner =~ 6 and
Pouter = 16 for poo = 12. Thus, the radius p;nner Of the inner region increases with the size of
the nearfield free-surface region X'°“", and one may presume that p jyner — 00 @S pog — 00.
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5. Additional results

Implications of the property (11) and re-
lated numerical results given in Fig.2 and Fig.3
will be discussed at the Workshop. Alterna-
tive boundary integral representations suited for
nearfield and farfield flows will also be pre-
sented, and numerically illustrated for wave
diffraction-radiation by an offshore structure. A
more detailed account of this study will be re-
portedin [5].
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Figures

Fig.1 (top of right column) Flux n-V¢ at X5,
potential ¢ at ¥ 5 UXJ°" and pressure ¢, — f2¢
at °". The free-surface pressure ¢, — f2¢
vanishes rapidly in the farfield.

Fig.2 (center of right column) Input potential q~5
given by (12) and Rankine potential ¢/ (4)
for free-surface integration truncated at p oo = 6
and p = 12. The Rankine potential ggR is
exact in the nearfield and vanishes rapidly in the
farfield.

Fig.3 (bottom of right column) Input potential
¢ given by (12) and wave potential &W/ (4m)
for free-surface integration truncated at p oo = 6
and poo = 12. The wave potential $" is null in
the nearfield and becomes exact in the farfield.






