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Figure 1: Streamlines generated by the complex potential (7) with Q = V = 1 − |S|. In the left column S < 0
and k > 0, and conversely in the right column. The body profile is shown by the heavy line. The dividing
streamline intersects this profile normally at the stagnation point. The singular point x = π/2 is marked by a
filled circle. Reflected streamlines for x < 0 are not shown.
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�. Green’s classical potential representation

Consider a finite 3D regionD bounded by a closed surface Σ . The divergence theorem applied
to the function φ∇G−G∇φ yields the classical Green identity

D
dV (φ∇2G−G∇2φ) =



Σ
dA (G n ·∇φ− φ n ·∇G) (1)

where dV and dA stand for differential elements of volume or area of the regionD or the boundary
surface Σ , and n is a unit vector that is normal to Σ and points inside D. For a function φ ≡ φ(x)
that satisfies the Laplace equation ∇2φ = 0 within D, and a Green function G ≡ G(x ; x) that
satisfies the Poisson equation ∇2G = δ(x− x) δ(y − y) δ(z − z) in D, or in a larger region that
includes D, (1) yields Green’s classical boundary-integral representation

C φ =


Σ
dA (G n ·∇φ− φ n ·∇G) (2a)

with C =


D
dV δ(x− x) δ(y − y) δ(z − z) =





1
1/2
0



 if x lies





inside D
on Σ
outside D



 (2b)

Here and below, x = (x , y , z) and φ are nondimensional in terms of a reference length L and
velocity U , i.e. one has x = X/L and φ = Φ/(UL). In (2b), the value C = 1/2 at a point
x of the boundary surface Σ assumes that Σ is smooth at x . Green’s representation (2) defines
the potential φ ≡ φ(x) at a flow-field point x in terms of boundary distributions of sources (with
strength n ·∇φ ) and normal dipoles (strength φ ), and involves a Green function G and the first
derivatives of G . In (2) and below, x stands for a flow-field point, i.e. a point inside a 3D flow
region D, and x is a point of the boundary surface Σ of the flow region, i.e. a boundary point.

The general solution of the Poisson equation∇2G = δ(x− x) δ(y − y) δ(z − z) is given by

4πG = −1/r + H = S + H with r =


(x− x)2+ (y− y)2+ (z− z)2 (3)
r is the distance between x = (x, y , z) and x = ( x, y , z ) , and H(x ; x) stands for a function
that is harmonic within the flow region D (or a larger region that includes D). Thus, the singular
component S and the harmonic component H in (3) satisfy

∇2S = 4π δ(x− x) δ(y − y) δ(z − z) and ∇2H = 0

Application of Green’s identity (1) to the potential φ and the functions S or H yield

4π C φ =


Σ
dA (S n ·∇φ− φ n ·∇S ) 0 =



Σ
dA (H n ·∇φ− φ n ·∇H ) (4)

2. Application to free-surface flows in deep water

The boundary surface Σ and the Green function G in Green’s relations (2) and (4) are generic.
These generic relations are now applied to free-surface flows about ships or offshore structures in
deep water. The closed boundary surface Σ in (2a) consists of Σ = ΣB ∪ Σ0 ∪ Σ∞ . Here, ΣB

stands for the mean wetted hull of a rigid body (ship or structure) or, more generally, a control
surface that encloses a rigid body; Σ0 is the portion of the mean free-surface plane located outside
the “body” surface ΣB ; and Σ∞ joins Σ0 and ΣD in the farfield. The unit vector n = (nx, ny, nz )
is normal to the boundary surface Σ and points into the flow domain, as already noted. Thus,
n = (0 , 0 ,−1) at the free surface Σ0 . The Green function G in (2a) is presumed to vanish
sufficiently rapidly in the farfield to nullify the contribution of the farfield boundary surface Σ∞ .
Thus, the contribution of Σ∞ is ignored, and the free surface Σ0 is unbounded. Green’s potential
representation (2a) then becomes
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C φ =


ΣB

dA (G n ·∇φ− φ n ·∇G)−


Σ0

dx dy (Gφz −Gzφ) (5)

Here, the z axis is vertical and points upward, and the mean free surface is taken as the plane
z=0 . It is useful to use a Green function of the form

4πG = −1/r ±1/r∗ +H with r∗ =

(x− x)2+ (y − y)2+ (z + z)2 (6)

H(x ; x) is harmonic within the flow region D (or a larger region that includes D). Expressions
(2b) and (6) show that C = 1 if the flow-field point x is located at the free surface Σ0 . Thus, (2b)
becomes

C =



1
1/2
0



 if x lies





in D ∪ Σ0
on ΣB
outside D ∪ ΣB ∪ Σ0



 (7)

3. Local-flow and wave decomposition

The harmonic function H in the basic Green-function representation (6) can be decomposed
into a local-flow component and a wave component. Thus, a Green function of the form

4πG = −1/r + L+W = R+W (8)
is now considered. Here, the local-flow component L and the wave component W are presumed to
satisfy the Laplace equations ∇2L= 0 and ∇2W = 0 . The decomposition (8) is not unique. For
instance, for diffraction-radiation of regular waves by an offshore structure, a particularly simple
choice of Green function is defined in [ 1 ] as

R = −1/r −1/r∗+ 2/rf W = −if2 e f2Z∗
 π

−π
dt (1−Θ) e− iΦ (9a)

r =
√
h 2+Z 2 r∗ =


h 2+Z 2∗ r

f
=


h 2+Z 2

f

where h =
√
X 2+Y 2 X = x− x Y = y − y

Z = z − z Z∗ = z + z Zf = Z∗− σR/f2





(9b)

Φ = f2(X cos t+Y sin t) Θ =
sinh(Φ/σW ) + i sin(V/σW )
cosh(Φ/σW ) + cos(V/σW )

with V = f2Z∗ (9c)

and −V/σW < CW < π . This Green function, which only involves elementary functions of real
arguments, satisfies the free-surface condition Gz−f2G = 0 at z = 0 accurately in the farfield, but
only approximately (to leading order) in the nearfield. The Rankine component R involves three
elementary free-space Rankine sources: a unit source at the singular point x = (x , y , z) , a unit
source at the mirror image (x , y ,−z) of x with respect to the mean free-surface plane z = 0 , and
a “double” sink (strength 2) at the point (x , y ,−z+ σR/f2) . This arrangement of elementary
point sources and sinks satisfies the linear free-surface boundary condition Gz − f2G = 0 at
z = 0 to leading order, in both the nearfield and the farfield. The wave component is given by a
one-dimensional Fourier superposition of elementary waves e f2Z∗− iΦ. The radiation condition is
satisfied via the function Θ ; see [ 1 , 2 ] . More complicated Green functions that satisfy the linear
free-surface boundary condition everywhere (in the nearfield as well as the farfield) can be used.
These alternative free-surface Green functions are also of the form (8); see e.g. [ 3 , 4 ] .

Using the Rankine-wave decomposition (8) of the Greeen function in (5), one obtains the
representation 4π C φ = φR+ φW of the potential φ at a flow-field point x . Here, the Rankine
potential φR and the wave potential φW correspond to the Rankine and wave components R and
W in (8), and C is given by (7). Thus, for diffraction-radiation of regular waves by an offshore
structure, the potentials φR and φW are given by

φR=


ΣB

dA (R n ·∇φ− φ n ·∇R) +


Σ0

dxdy [(Rz −f2R)φ−R(φz −f2φ)] (10a)

φW =


ΣB

dA (W n ·∇φ− φ n ·∇W ) +


Σ0

dxdy [(Wz −f2W )φ−W (φz −f2φ)] (10b)

Use of expressions (9) for the Rankine and wave components R and W in (10) yields ex-
pressions for the potentials φR and φW that only involve elementary functions of real arguments.
These simple expressions for φR and φW are given in [ 5 ] . Integration over the free surface Σ0 in
(10) only needs to be performed over a finite nearfield portion of the unbounded free surface. In
particular, the terms Rz −f2R and R in (10a) are O (1/ρ3) as ρ ≡ 

x2+ y2 →∞ .

�. A seemingly paradoxical property

The wave component W in (8) satisfies the Laplace equation ∇2W = 0 , as already noted. It
follows from (4) that the wave potential φW in (10) is null, i.e. one has φW≡ 0 . However, the wave
potential φW is known to become exact in the horizontal farfield; specifically, one has φW∼ 4π φ
as ρ ≡ 

x2+ y2 → ∞ . This seemingly contradictory result can be explained if the unbounded
free surface Σ0 is divided into a finite nearfield portion Σnear

0 and an unbounded farfield portion
Σ far

0 . Thus, the unbounded free surface is expressed as Σ0 = Σnear
0 ∪Σ far

0 . Specifically, Σ far
0

is taken here as the region ρ∞ < ρ . Let φR
near and φW

near stand for the contributions of the finite
nearfield boundary surface Σnear = ΣB∪Σnear

0 to the Rankine and wave potentials φR and φW.
One has φW

near≈ 0 and φN
near ≈ 4π φ for ρ ≤ ρ inner < ρ∞

φN
near≈ 0 and φW

near ≈ 4π φ for ρ∞ < ρ outer ≤ ρ


(11)

This property is numericallly illustrated and verified here by considering a simple axisymmetric
flow generated by a pulsating point source. Specifically, consider the flow defined by the potential

φ(x) = G(a ;x) with a = (0 , 0 ,−0.1) and f = 2 (12)
Here, G stands for the free-surface Green function defined by (8) and (9) with σR = 1 , σW = 3 ,
C W = 2.3 . The flow due to the pulsating source (12) is considered for the unbounded flow region
that is outside a spherical boundary surface ΣB , taken as the half sphere


x2+ y2+ z2 = 1 with

z ≤ 0 . The flow φnear associated with (12) is defined by (10) in terms of the flux n ·∇φ at ΣB ,
the potential φ at ΣB ∪ Σnear

0 and the pressure φz − f2φ at Σnear
0 . These three forcing terms,

easily evaluated from (9), are depicted in Fig.1 along the line defined by y = 0 and

x = sin(πt/2) z = − cos(π t/2) with 0 ≤ t ≤ 1
x = t z = 0 with 1 ≤ t ≤ 18


(13)

Fig.1 shows that the pressure φz−f2φ at the free surface Σ0 decays rapidly as t increases, i.e. away
from the (spherical) boundary surface ΣB . The “input” potential φ given by (12) and the Rank-
ine potential φR/(4π) and wave potential φW/(4π) , reconstructed using the boundary-integral
representation (10), are depicted in Fig.2 and Fig.3 along the line

x = (1+ µ) sin(πt/2) z = −(1+ µ) cos(π t/2) with 0 ≤ t ≤ t∗
x = t z = −µ with t∗ ≤ t ≤ 18


(14)

and t∗ = (2/π) cos−1[µ/(1+ µ) ]. The line (14) is located inside the flow region, at a distance µ
(taken equal to 0.03 here) from the line (13).

Fig.2 depicts the potential (12) and the Rankine potential φR/(4π) with ρ∞ taken equal to 6 or
12 . Thus, the radius ρ∞ of the nearfield region Σnear

0 of the unbounded free surface is taken equal
to 6 or 12 in Fig.2 . This figure shows that φR

near ≈ 4π φ in an inner region ρ ≤ ρ inner < ρ∞
and that φR vanishes rapidly for ρ∞ < ρ , in accordance with (11). The radius ρ inner of the inner
region, roughly equal to 5 for ρ∞ = 6 or to 11 for ρ∞ = 12 , increases as the radius ρ∞ of
the nearfield region Σnear

0 of the free surface increases, and one may presume that ρ inner → ∞
as ρ∞ → ∞ . Similarly, Fig.3 depicts the potential (12) and the wave potential φW/(4π) with
ρ∞ taken equal to 6 or 12 , as in Fig.1 . Fig.2 shows that φW

near ≈ 4π φ in an outer region
ρ∞ < ρ outer ≤ ρ and that φW

near≈ 0 in an inner region ρ ≤ ρ inner < ρ∞ , in agreement with
(11). Fig.3 shows that one has ρ inner ≈ 1 and ρ outer ≈ 10 for ρ∞ = 6 ; and ρ inner ≈ 6 and
ρ outer ≈ 16 for ρ∞ = 12 . Thus, the radius ρ inner of the inner region increases with the size of
the nearfield free-surface region Σnear

0 , and one may presume that ρ inner →∞ as ρ∞ →∞ .
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C φ =


ΣB

dA (G n ·∇φ− φ n ·∇G)−


Σ0

dx dy (Gφz −Gzφ) (5)

Here, the z axis is vertical and points upward, and the mean free surface is taken as the plane
z=0 . It is useful to use a Green function of the form

4πG = −1/r ±1/r∗ +H with r∗ =

(x− x)2+ (y − y)2+ (z + z)2 (6)

H(x ; x) is harmonic within the flow region D (or a larger region that includes D). Expressions
(2b) and (6) show that C = 1 if the flow-field point x is located at the free surface Σ0 . Thus, (2b)
becomes

C =



1
1/2
0



 if x lies





in D ∪ Σ0
on ΣB
outside D ∪ ΣB ∪ Σ0



 (7)

3. Local-flow and wave decomposition

The harmonic function H in the basic Green-function representation (6) can be decomposed
into a local-flow component and a wave component. Thus, a Green function of the form

4πG = −1/r + L+W = R+W (8)
is now considered. Here, the local-flow component L and the wave component W are presumed to
satisfy the Laplace equations ∇2L= 0 and ∇2W = 0 . The decomposition (8) is not unique. For
instance, for diffraction-radiation of regular waves by an offshore structure, a particularly simple
choice of Green function is defined in [ 1 ] as

R = −1/r −1/r∗+ 2/rf W = −if2 e f2Z∗
 π

−π
dt (1−Θ) e− iΦ (9a)

r =
√
h 2+Z 2 r∗ =


h 2+Z 2∗ r

f
=


h 2+Z 2

f

where h =
√
X 2+Y 2 X = x− x Y = y − y

Z = z − z Z∗ = z + z Zf = Z∗− σR/f2





(9b)

Φ = f2(X cos t+Y sin t) Θ =
sinh(Φ/σW ) + i sin(V/σW )
cosh(Φ/σW ) + cos(V/σW )

with V = f2Z∗ (9c)

and −V/σW < CW < π . This Green function, which only involves elementary functions of real
arguments, satisfies the free-surface condition Gz−f2G = 0 at z = 0 accurately in the farfield, but
only approximately (to leading order) in the nearfield. The Rankine component R involves three
elementary free-space Rankine sources: a unit source at the singular point x = (x , y , z) , a unit
source at the mirror image (x , y ,−z) of x with respect to the mean free-surface plane z = 0 , and
a “double” sink (strength 2) at the point (x , y ,−z+ σR/f2) . This arrangement of elementary
point sources and sinks satisfies the linear free-surface boundary condition Gz − f2G = 0 at
z = 0 to leading order, in both the nearfield and the farfield. The wave component is given by a
one-dimensional Fourier superposition of elementary waves e f2Z∗− iΦ. The radiation condition is
satisfied via the function Θ ; see [ 1 , 2 ] . More complicated Green functions that satisfy the linear
free-surface boundary condition everywhere (in the nearfield as well as the farfield) can be used.
These alternative free-surface Green functions are also of the form (8); see e.g. [ 3 , 4 ] .

Using the Rankine-wave decomposition (8) of the Greeen function in (5), one obtains the
representation 4π C φ = φR+ φW of the potential φ at a flow-field point x . Here, the Rankine
potential φR and the wave potential φW correspond to the Rankine and wave components R and
W in (8), and C is given by (7). Thus, for diffraction-radiation of regular waves by an offshore
structure, the potentials φR and φW are given by

φR=


ΣB

dA (R n ·∇φ− φ n ·∇R) +


Σ0

dxdy [(Rz −f2R)φ−R(φz −f2φ)] (10a)

φW =


ΣB

dA (W n ·∇φ− φ n ·∇W ) +


Σ0

dxdy [(Wz −f2W )φ−W (φz −f2φ)] (10b)

Use of expressions (9) for the Rankine and wave components R and W in (10) yields ex-
pressions for the potentials φR and φW that only involve elementary functions of real arguments.
These simple expressions for φR and φW are given in [ 5 ] . Integration over the free surface Σ0 in
(10) only needs to be performed over a finite nearfield portion of the unbounded free surface. In
particular, the terms Rz −f2R and R in (10a) are O (1/ρ3) as ρ ≡ 

x2+ y2 →∞ .

�. A seemingly paradoxical property

The wave component W in (8) satisfies the Laplace equation ∇2W = 0 , as already noted. It
follows from (4) that the wave potential φW in (10) is null, i.e. one has φW≡ 0 . However, the wave
potential φW is known to become exact in the horizontal farfield; specifically, one has φW∼ 4π φ
as ρ ≡ 

x2+ y2 → ∞ . This seemingly contradictory result can be explained if the unbounded
free surface Σ0 is divided into a finite nearfield portion Σnear

0 and an unbounded farfield portion
Σ far

0 . Thus, the unbounded free surface is expressed as Σ0 = Σnear
0 ∪Σ far

0 . Specifically, Σ far
0

is taken here as the region ρ∞ < ρ . Let φR
near and φW

near stand for the contributions of the finite
nearfield boundary surface Σnear = ΣB∪Σnear

0 to the Rankine and wave potentials φR and φW.
One has φW

near≈ 0 and φN
near ≈ 4π φ for ρ ≤ ρ inner < ρ∞

φN
near≈ 0 and φW

near ≈ 4π φ for ρ∞ < ρ outer ≤ ρ


(11)

This property is numericallly illustrated and verified here by considering a simple axisymmetric
flow generated by a pulsating point source. Specifically, consider the flow defined by the potential

φ(x) = G(a ;x) with a = (0 , 0 ,−0.1) and f = 2 (12)
Here, G stands for the free-surface Green function defined by (8) and (9) with σR = 1 , σW = 3 ,
C W = 2.3 . The flow due to the pulsating source (12) is considered for the unbounded flow region
that is outside a spherical boundary surface ΣB , taken as the half sphere


x2+ y2+ z2 = 1 with

z ≤ 0 . The flow φnear associated with (12) is defined by (10) in terms of the flux n ·∇φ at ΣB ,
the potential φ at ΣB ∪ Σnear

0 and the pressure φz − f2φ at Σnear
0 . These three forcing terms,

easily evaluated from (9), are depicted in Fig.1 along the line defined by y = 0 and

x = sin(πt/2) z = − cos(π t/2) with 0 ≤ t ≤ 1
x = t z = 0 with 1 ≤ t ≤ 18


(13)

Fig.1 shows that the pressure φz−f2φ at the free surface Σ0 decays rapidly as t increases, i.e. away
from the (spherical) boundary surface ΣB . The “input” potential φ given by (12) and the Rank-
ine potential φR/(4π) and wave potential φW/(4π) , reconstructed using the boundary-integral
representation (10), are depicted in Fig.2 and Fig.3 along the line

x = (1+ µ) sin(πt/2) z = −(1+ µ) cos(π t/2) with 0 ≤ t ≤ t∗
x = t z = −µ with t∗ ≤ t ≤ 18


(14)

and t∗ = (2/π) cos−1[µ/(1+ µ) ]. The line (14) is located inside the flow region, at a distance µ
(taken equal to 0.03 here) from the line (13).

Fig.2 depicts the potential (12) and the Rankine potential φR/(4π) with ρ∞ taken equal to 6 or
12 . Thus, the radius ρ∞ of the nearfield region Σnear

0 of the unbounded free surface is taken equal
to 6 or 12 in Fig.2 . This figure shows that φR

near ≈ 4π φ in an inner region ρ ≤ ρ inner < ρ∞
and that φR vanishes rapidly for ρ∞ < ρ , in accordance with (11). The radius ρ inner of the inner
region, roughly equal to 5 for ρ∞ = 6 or to 11 for ρ∞ = 12 , increases as the radius ρ∞ of
the nearfield region Σnear

0 of the free surface increases, and one may presume that ρ inner → ∞
as ρ∞ → ∞ . Similarly, Fig.3 depicts the potential (12) and the wave potential φW/(4π) with
ρ∞ taken equal to 6 or 12 , as in Fig.1 . Fig.2 shows that φW

near ≈ 4π φ in an outer region
ρ∞ < ρ outer ≤ ρ and that φW

near≈ 0 in an inner region ρ ≤ ρ inner < ρ∞ , in agreement with
(11). Fig.3 shows that one has ρ inner ≈ 1 and ρ outer ≈ 10 for ρ∞ = 6 ; and ρ inner ≈ 6 and
ρ outer ≈ 16 for ρ∞ = 12 . Thus, the radius ρ inner of the inner region increases with the size of
the nearfield free-surface region Σnear

0 , and one may presume that ρ inner →∞ as ρ∞ →∞ .
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�. Additional results

Implications of the property (11) and re-
lated numerical results given in Fig.2 and Fig.3
will be discussed at the Workshop. Alterna-
tive boundary integral representations suited for
nearfield and farfield flows will also be pre-
sented, and numerically illustrated for wave
diffraction-radiation by an offshore structure. A
more detailed account of this study will be re-
ported in [ 5 ] .
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Figures

Fig.1 (top of right column) Flux n ·∇φ at ΣB ,
potential φ at ΣB∪Σnear

0 and pressure φz−f2φ
at Σnear

0 . The free-surface pressure φz − f2φ
vanishes rapidly in the farfield.
Fig.2 (center of right column) Input potential φ
given by (12) and Rankine potential φR/(4π)
for free-surface integration truncated at ρ∞ = 6
and ρ∞ = 12 . The Rankine potential φR is
exact in the nearfield and vanishes rapidly in the
farfield.
Fig.3 (bottom of right column) Input potential
φ given by (12) and wave potential φW/(4π)
for free-surface integration truncated at ρ∞ = 6
and ρ∞ = 12 . The wave potential φW is null in
the nearfield and becomes exact in the farfield.
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