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Introduction

Surface water waves propagating into shallow water are affected by the changes in the sea
bed. Often, Boussinesqg-type wave models are used to take these finite-depth effects into
account. In Klopman et al. (2005), a variational method has been used to derive fully non-
linear Boussinesq-type models from the full three-dimensional Hamiltonian structure. The
canonical structure, as well as the positive definiteness of the Hamiltonian are preserved
by this approach. In our view and experience, the positive definiteness of the resulting
Hamiltonian ensures the good dynamical behaviour of the resulting equations.

In Klopman et al. (2005), the variational model has been derived for one horizontal
dimension, and numerical examples have been presented for waves propagating over a
horizontal bed. Here, we will extend the model to two horizontal dimensions. The model
will be applied to the computation of waves propagating over an elliptic shoal on a slope
(Berkhoff et al., 1982). This test case is known to be affected by wave shoaling, refraction,
diffraction and non-linearity (Kirby & Dalrymple, 1984; Dingemans et al., 1984).

Hamiltonian model for waves propagating in two horizontal dimensions

The Hamiltonian theory for surface water waves on an incompressible fluid with an irro-
tational flow was independently discovered by Zakharov (1968), Broer (1974) and Miles
(1977). Consider a fluid layer bounded below by the sea bed at z = —hg(x) and above
by the free surface z = ((x,t), where x = (z,y)’ are the horizontal coordinates, z is the
vertical coordinate and t is the time. The irrotational flow of the homogeneous fluid of
unit mass density is described with a velocity potential ¢(x, 2,t), i.e. Vo = (0,¢,9,0)"
are the horizontal flow velocity components and 0,¢ is the vertical velocity component.
The potential at the free surface is denoted as p(x,t) = ¢(x,((x,t),t). Then ¢ and ¢ are
canonical variables, and the Hamiltonian description of the flow is given by:
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provided the flow in the fluid interior satisfies the Laplace equation, the bottom boundary
condition at z = —h( ) and the free-surface condition ¢ = ¢(x,t) at z = ((x,t). The

Hamiltonian (¢, ¢) is equal to the sum of the kinetic and potential energy of the fluid:
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where ¢ is the value of the grawtatlonal acceleration, with gravity acting in the negative
z-direction.

Now, in order to be able to derive a model only in the horizontal coordinates x and
time ¢, we assume a vertical structure of the flow:
(3) ¢(X727t) = gO(X, t) + f(z;h(],C) w(xa t)a
assuming f(z; ho,() to be given. To preserve the canonical structure, and to arrive at
time-evolution equations for only ¢ and ¢, it is essential to require that f = 0 at the free
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surface z = ((x,t). In accordance with the classical Boussinesq model, with a parabolic
shape for the vertical flow structure and 0. f = 0 at the sea bed, we choose:

1 h() + z
(@) fhnd) = 3G-0 (1+ 250,
which is expected to be a good approximation for mildly-sloping sea beds and intermediate
to shallow water depths. In this case, the function f(z; hg, () has been normalized, in order
to have ¥ (x,t) equal to the vertical velocity at the free surface. Note that also other forms
of f(z;ho,¢) may be taken, as well as a series of vertical shape functions (each equal to
zero at the free surface).

We use the approximation (3) to compute the velocities needed in the Hamiltonian (2),
and use a mild-slope assumption by neglecting the sea bed slopes in the velocities (but not
in the functional derivatives of J#). Then the Hamiltonian .7((, ;1) for the Boussinesq
model becomes:
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which is indeed seen to be positive definite.

Next, we introduce the horizontal gradient of the velocity potential, u = V¢ and the
instantaneous total depth h(x,t) = ho(x) + ((x,t). Note that u(x,t) is different from the
horizontal velocity components V¢ at the free surface, since p(x,t) is not at a fixed level
but at the moving free surface. Then, from Eq. (1) and from 05 /6 = 0, we get after
taking the gradient of the equation for ¢(x,t):
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where

(7) U(x,t) = u — %w V( — %hvw

is the depth-averaged velocity. For one horizontal spatial dimension, the above set of
equations is equal to the one derived in Klopman et al. (2005). Note that the third
equation in (6) is an elliptic equation for v, and also that it is a linear equation in terms

of 1.

Waves over an elliptic shoal on a uniform slope

The laboratory setup for the elliptic shoal test (Berkhoff et al., 1982) is shown in Figure 1,
also showing the measurement sections. The deeper part of the wave basin has a constant
depth of 0.45 m. The elliptic shoal is placed on a 1/50 sloping bottom, with the depth
contours on the slope making an angle of 20° with the z-axis. The centre of the shoal is
located at a distance (perpendicular to the depth contours) of 5.84 m from the toe of the
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Figure 1: Setup of the elliptic shoal test case.

slope, and the shoal thickness d is given by:

/2 / 2
r Y
d = —0. LRV —
(8) 03+05\/ +<5) +(3'75>7

with all distances in m. The incoming periodic waves are propagating in the negative
y-direction and have a wave period of 1.00 s and wave amplitude of 23.2 mm, with wave
amplitude defined as half the wave height. Wave amplitudes have been measured in a large
number of points on a 0.25 by 0.25 m grid (Dingemans, 1997, Section 4.7.2, Note 4.2).

For our computations we use a pseudo-spectral code to solve the set (6), similar to
the one used in Klopman et al. (2005), but now extended to two horizontal dimensions.
The resulting set of ordinary differential equations for ¢ and u in the grid points is solved
with a high-order ODE solver with variable step size (MATLAB function ‘odell3’). At
the start of each time step, 1 is determined for given ¢ and ¢, by solving the elliptic
equation (6a) for ¢ with a pre-conditioned conjugate-gradient method (MATLAB function
‘bicgstab’). On average, about 2 to 4 iterations are necessary to lower the residual in the
Y-equations to a relative error of 107°. Computation time is about twice the time needed
by the pseudo-spectral model for solving the shallow-water equations. The computations
have been performed on a spatial grid of 240 by 360 grid points with 0.125 m spacing, and
for a duration of 25 wave periods,.

Figures 2 and 3 give a comparison between the computations and the measurements.
Figure 3(b) clearly shows the diffraction pattern, as well as the wave focussing by refraction.
The two most discriminating sections, 5 and 6, show quite good agreement between the
measurements and the computations, comparable to the results of other wave models
(Mooiman, 1991; Kirby & Dalrymple, 1984; Dingemans et al., 1984). Wave non-linearity is
essential in these sections to get fair agreement with the measurements, as shown by both
Dingemans et al. (1984) and Kirby & Dalrymple (1984).
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(a) Measured wave amplitude. (b) Computed wave amplitude.

Figure 2: Measured and computed wave amplitudes for the elliptic shoal test case.
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(a) Section 5: y = —9 m. (b) Section 6: z = —2 m.
Figure 3: Wave amplitudes in sections 5 and 6: measurements (circles) and computation (solid
line).
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