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Introduction

For over half a century there has been considerable interest in the question of
under what circumstances the linear water wave problem may admit non-unique
mathematical solutions. There have been many results proving the uniqueness
of specific classes of systems and until recently it was generally believed that a
uniqueness proof for all configurations might be possible to construct. However,
examples of non-uniqueness have now been reported for both surface-piercing
and submerged bodies (see for example McIver, 1996 and 2000). These non-
unique solutions correspond to a trapping of energy around the bodies. To the
authors’ knowledge, no previous investigation has been made on the existence
of trapped modes in free surface water wave problems with surface tension in
an unbounded fluid. Its effect shall be considered in a problem where trapped
modes are known to exist in its absence.

Formulation of the problem

A two-dimensional Cartesian coordinate system (x, y) is adopted, with the y-
axis pointing vertically downwards. The fluid depth is infinite. A time-harmonic
velocity potential Re{φ(x, y)e−iωt} is assumed, where ω is the angular frequency.
With surface tension T , free surface waves have wavenumber k0 given by the
positive real root of T

ρg
k3

0 + k0 =
ω2

g
, and it is possible to non-dimensionalise the

trapped mode problem for φ(x, y) to the following system of equations:

∇2φ = 0 in the fluid, (1)

∂φ

∂y
+ (1 + s)φ − s

∂3φ

∂x2∂y
= 0 on the free surface, (2)

∂φ

∂n
= 0 on fixed, rigid boundaries, (3)

|∇φ| → 0 as x2 + y2 → ∞ (y ≥ 0), (4)

where the parameter s =
Tk2

0

ρg
= ω2

gk0

− 1 has been introduced. For fixed ω, fluid
density ρ and g, s is a measure of the surface tension present.

Trapped modes around submerged bodies

An example of a submerged structure that supports trapped modes is given
by McIver (2000). This is constructed by placing a horizontal and vertical dipole
pairing at (a, h) and a symmetric combination at (−a, h). The constant a is
chosen to be π

4
, whereas h is allowed to vary. The exact velocity potential is

given by

φ(x, y, a, h) = sin a(φv(x, y, a, h) + φv(x, y,−a, h))

− cos a(φh(x, y, a, h)− φh(x, y,−a, h)),
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where φh (φv) denotes the potential of a horizontal (vertical) dipole:

φh(x, y, ξ, η) =
1

1 + s

�

x − ξ

(x − ξ)2 + (y − η)2
+

x − ξ

(x − ξ)2 + (y + η)2

�

+2Im

�

∞

0

∪
e−m(y+η)+im(x−ξ)

sm3 +m − 1− s
dm, (5)

φv(x, y, ξ, η) =
1

1 + s

�

y − η

(x − ξ)2 + (y − η)2
−

y + η

(x − ξ)2 + (y + η)2

�

−2Re

�

∞

0

∪
e−m(y+η)+im(x−ξ)

sm3 +m − 1− s
dm. (6)

For each h > 0, there exist four saddle-point stagnation points — two in x > 0
and two in x < 0. By considering the variation of streamfunction values at the
two stagnation points in x > 0, it is argued that there must be a positive value of
h, h0 say, at which the streamfunction takes the same numerical value ψ0 at these
two points. These stagnation points can then be shown to be connected by a
closed streamline. Symmetry shows that the stagnation points in x < 0 are also
connected by a closed mirror-image streamline. These two closed streamlines
can be interpreted as the boundaries of two submerged bodies. The argument
principle is used to show that the stagnation points lie in y > 0, and a free
surface plot verifies that ψ(x, 0) = ψ0 on the ‘other’ branch of the streamline
(i.e. the one not being interpreted as a body boundary — see figure 1). When
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Figure 1: The submerged body in x > 0 that supports trapped modes, and a
plot of the streamfunction values on the free surface, both presented in McIver
(2000).

surface tension is included, the same combination of dipoles satisfies (1), (2) and
(4), and it can be shown that the corresponding complex potential w = φ+ iψ
is given by

w(z) =
−2z0e

−ia

(1 + s)(z2 − z2
0)

−
2z̄0e

ia

(1 + s)(z2 − z̄2
0)

−
2ie−ia

3s+ 1
(g(z + z0) +B+p+(z + z0) +B−p−(z + z0))

+
2ieia

3s+ 1
(g(z − z̄0) +B+p+(z − z̄0) +B−p−(z − z̄0)) , (7)
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where z = x+ iy, z0 = a+ ih and B± = −1
2
± 3i

2

�

3 + 4
s

�−
1

2 . The functions g(z),
p±(z) arise from the partial fraction decomposition as in (5). They are defined
in terms of the exponential integral E1(z), in such a way as to ensure that the
branch cut of each function lies on x = 0, y < 0 (note that the functions p±(z)
are not needed for s = 0 as there are then no complex zeros of sm3+m−1−s).
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Figure 2: The x and y location of the stagnation points as a function of s

(a = π
4
).

With a = π
4
, contour plots of the bodies when s �= 0 closely resemble the one

shown in figure 1. However, as surface tension increases the stagnation points in
x > 0 converge upon either side of x = π

4
and move closer to the free surface, as

can be seen from the second graph in figure 2. The dipole submergence h0 also
becomes very small. In addition, as s increases it becomes increasingly difficult
to accurately calculate the position of the stagnation points. Indeed, by around
s = 1.275 the results found (using Newton’s method) can no longer be taken to
be accurate. The reason for this is that for each value of a, there is a critical value
of s, s0 say, above which the trapped mode no longer persists. This can be shown
using asymptotic expansions. Assume that h0 = ǫ ≪ 1 and seek an expansion
for s of the form s = s0 − (α1ǫ+α2ǫ log ǫ+α3ǫ

2+α4ǫ
2 log ǫ+ . . . ), where αi are

constants to be found and the log ǫ terms are needed to ensure the convergence of
certain integrals. It can be shown that the stagnation points in x > 0 are located
at a+ǫ(− tan a±sec a)±ǫ3q±, where q± = ± sec2 a

�

cos a
2a2 − c0(s0)

�

(sec a∓tan a)2,
with

c0(s0) = −2(1 + s0)e
−ia

�

∞

0

m(e2ia − e2ima)

s0m3 +m − 1− s0

dm. (8)

It can be seen that if the imaginary part of c0(s0) is non-zero, then the stagnation
points lie on opposite sides of the free surface, and the body that supports
trapped modes ceases to be submerged. It follows that to retain the possibility
of a submerged body, Im(c0(s0)) = 0. This condition allows us to find s0 for a
given value of a. Figure 3 shows how s0 varies as a. In particular, when a = π

4
,

s0 ≈ 1.277. This explains the difficulties encountered when trying to obtain
numerical results for a = π

4
, s > 1.27.

The next order terms in the expansion give the depths of the stagnation
points below the free surface, and a condition on ǫ that ensures the stream-
function takes the same value at these points. Omitting the details, it is found
that for a given dipole submergence ǫ, the approximate value of s that en-
sures ψ = ψ0 at the two stagnation points for a = π

4
is, up to O(ǫ), s =
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1.276997 + ǫ(3.24 + 23.2 log ǫ), provided ǫ is small. This last equation agrees
well with the numerical results found when ǫ is less than approximately 5×10−4,
which corresponds to the range 1.19 < s < s0. For these values of ǫ the error
in the approximation is at most 0.37%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

a

s0

Figure 3: Graph showing how the critical surface tension value varies with a.

Examining expression (8) from a different perspective, it can be supposed
that for every critical value s0 there is a minimum dipole separation, amin say,
below which there are no submerged obstacles that support trapped modes. Of
course, amin is related to the minimum allowable body separation. For a given
s0, amin is given by figure 3. It might be expected that there is also a maximum
dipole separation amax. Experimentation on the variation of h0 as a function
of a suggests that for all values of s, amax =

π
2
. The most deeply submerged

bodies are produced when a lies in the vicinity of π
4
and the global maximum

value of h0 that supports submerged trapped modes is 0.0597177, attained when
s = 0.013, a = 0.7652. When there is no surface tension present, the maximum
obtainable dipole depth is 0.0547949, which occurs when a = 0.7756. Figure 3
also suggests that when a approaches a value close to 0.9, s0 diverges to infinity.
By deforming the contour in (8) and rearranging, it can be shown that indeed
s0 → ∞ when a → 0.901924 . . .. Therefore, beyond this value of a there is no
critical value for the surface tension, i.e. submerged bodies which support a
trapped mode exist for all values of s.

Conclusion

It has been shown that the exclusion of surface tension from the linearized
water wave problem is not always justified, as its inclusion in the particular
submerged-body example above changes the qualitative (i.e. topological) na-
ture of the streamline pattern. This is not just a hypothetical result — the
breakdown of the existence of localized solutions about these submerged bod-
ies occurs at physically realistic wavelengths, provided that the parameter a is
chosen appropriately.
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