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Wagner did introduce in 1932 a simplified model of
great use to deal with fluid structure impacts [Wag32].

The two dimensional case has been extensively stud-
ied in the past (see e.g. [ZF93|); a variational inequality
method has been introduced to solve the three dimen-
sional Wagner impact [GKMSO05].

One suggests in this chapter to use a shape optimi-
sation process to deform the contact line I' in order to
determine the 3D Wagner contact line.

Introduction

It is suggested in [Kor82] to introduce the displacement
potential ¢, which is the integration with respect to time
of the velocity potential .

MiU=A¢@JMh (1)

Considering a structure f falling in flat water that
occupies z < 0, the Wagner approximation linearises the
free and wet surfaces one the plan {z = 0}. The gravity
is neglected, leading to ¢ = 0 on the free surface. On the
wet surface, the fluid elevation is exactly the position of
the structure.

The contact line is unknown. Anyway, for any' curve
I' defining a wet surface I',, and a free surface I'y, one
can write a boundary value problem for the displacement
potential.

Ap=0 in Q= {z<0}
=0 only 2)
0.0 = f(&)—h(t) onT,
¢— 0 in the far field,

where h is the penetration depth of the entering body.
One defines the bilinear laplacian form «, and the linear
form [, from the Neumann condition.

a(u,v) = /QVu - Vo d, (3)

l(v):/ (f=h)-vdX. (4)

w

The linear boundary value problem (2) can be reduced
to the unconstrained minimisation of functional

T(9) = 3a(6.6) - 1(9) Q

INot necessary the Wagner contact line, since it must be found.

The potential ¢ is the unique function which minimises
J in the weighted Sobolev space

v

1+ TP

whQ) = {v € L*(Q) and

ov Ov Ov

2
oc oy 0z < - (Q)}' ©)
Justification of this results may be found in [GKMS05].

However, resolution of the boundary value problem (2)
is not of immediate help, since the considered contact
line I' is not the Wagner contact line, which has to be
found.

One wants to deform the curve I' toward the Wagner
contact line. In other words, the influence on the solution
of BVP (2) of a variation of the wet surface is studied.
More precisely, the variations of .J with respect to I' are
evaluated.

In this paper, we establish a link between OrJ and
the Wagner problem. In particular, the asymptotic be-
haviour of the solution around the line I' is linked to
both OrJ and the Wagner problem.

Figure 1: The domain Q is transformed into Qg

The derivation of J with respect to the contact line is
performed using a domain derivation process. The fore-
most idea is to consider a vector field 6, and to deform
the studied domain in the direction of 6. The effect of
this transformation will lead to the directional derivative
with respect to the domain.

The derivation of the laplacian symmetrical bilinear
form on the unbounded fluid domain Q = {z < 0} will be
computed. Its re-writing on the boundary {z = 0} will
require special care because of the singular? behaviour
of the potential next to the curve I'. The derivative of
J will then be linked to the behaviour of the solution
¢. Then this behaviour will be linked to the Wagner
problem.

Two-dimensional and three-dimensional examples are
presented to illustrate the shape optimisation technique.

2The potential is singular in the sense where its derivative is
unbounded.
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1 Derivating with respect to the
contact line
The used mathematical developments and justifications

concerning shape optimisation are gathered together in
[A1L06].

One considers the domain Q@ = {z < 0}. For every
regular enough vector field 6, from R™ to R™ (n=2 or 3),
we define 2y as the image of 2 by I+ 6.

Qp = (I+0)(©), (7

where I is the identity application.

1.1 Derivating the bilinear form «a

The main point to perform the derivation of the bilinear
laplacian form a is to write it on the deformed domain.
Using a change of variables will bring the derivative of
a, after a first order expansion.

00,0 .0y _ -1, 7).
a<u7u>—/ﬂ<[v<ﬂ+e>1 Vu)

(VI + )]t - Vo)
det(V(I+6)) dQ,

(8)

where a 0 exponent characterises what is defined on do-
main .
A first order development is used.

[VI4+0)]' =1 - V6 +o(h), (9)

where 1 is the constant identity matrix. The Jacobian of
the transformation is 1 + V6, and the first order Taylor
expansion of its determinant is

det(1 + V0) = 1+ div(8) + |lo(0)]] - (10)

In order to obtain a first order development of bilinear
form a’, we substitute equations (9) and (10) into equa-
tion (8).

a® (u?,u?) :/ Vu - Vo dQ
Q

+/ Vu - [div(0) -1 — VO — V6] - Vv dQ
Q
+ [lo(®)]]-

(11)

The leading order appears to be the laplacian bilinear
form a written on the undeformed domain 2. Hence the
derivative a’ of the bilinear form a, with respect to the
domain 2, in the direction 0, may be defined as

a'(u,v)(0) :/QVw[div(H)-ll—VG—tV@]Vv dQ. (12)

1.2 Derivating the functional J

The functional of the boundary value problem (2) is

T(@) = 50(6,6) ~ 1(9) = —50(6,0),  (13)
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where ¢ is the unique solution of the variational equation
a(¢p,v) = 1(v), Yo € W(Q). The derivative of the bilin-
ear form a was computed, and is given in equation (12).
The derivative of the functional J with respect to the
domain, in the direction 6 can therefore be evaluated.

7(6) = ~ 506, )(0). (14

1.3 Rewriting d’

The derivative with respect to the domain €2 is defined
through the vector field §. We are more precisely inter-
ested in the derivative of .J with respect to the contact
line T'. The vector field # will only be non-zero in the
neighbourhood of T'.

Since the final aim is to study the influence of a de-
formation of the contact line I', and since the behaviour
of the solution ¢ is singular around I', particular atten-
tion must be paid to the neighbourhood of I'. In a way
similar to the residue theorem, it seems natural to build
some kind of half torus 7. (like a guttering), of radius
e, around the contact line. The domain inside the half
torus is called ¢, and the domain outside Q¢, such that

(15)

The geometries of the considered domains are described
in figure 2.

Q=0.UQ2,

and QL N Q2 = 0.

Figure 2: Two dimensional slice of the half torus, around the
contact line I". The surface of the half torus 7: defines the inside
domain Q! and the outside domain 2.

After some computation, we can write a’(¢, ¢)(0) as
d(G.000) = [ div(®): [VoP do
22
—2/_ V¢ -VO-Ve dQ
. (16)
+/ IV$|?0 - n dX
Q2
-2 (Vo -n)- (Vo -0) dX.
Q2
It is relevant to notice that the derivative a/(¢, ¢)(0)
has been expressed as a sum of integrals on the boundary
099° of the domain ¢, and on the inside domain . No
integral on the outside domain 22 remains.
Close to the contact line T', it is appropriate to decom-
pose the displacement potential as the sum of a singular
¢° part and a regular part ¢’

¢ =" + o™

The local behaviour of the singular part is known. In
the local polar coordinate system around I', for any point

(17)
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M of the contact line T', we express the singular part of y = p(z) = %1,2. The inclination angle is 4°. The
the potential at any point M’ = (M, r,9) close to T chosen penetration depth is at h = ﬁ.
S — A4S _ 4 For this precise situation, the two contact points are
@> (M) = ¢>(M,r,9) K¢,(M)\/Fcos27 (18)
w =~ 0.4867,
where r is the distance of M’ to the point M of the line I, Cg ~ 04145 (23)

and K is the singularity ccefficient of the potential. For
any given vector field 6 under the previous assumptions, The value of the functional J as a function of @ and b is

the limit of a’(¢, ¢)(0) as the radius € of 7: tends to zero  plotted in figure 3. This plot shows an horizontal tangent
may be computed.
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(0(M) - n(M)) dT, (19

where 7 is the normal to T, in the plan {z = 0}, toward 0 107°
the outside of T'. B

It is then possible to define the derivative of the func-—8 - 107° |
tional J with respect to the contact line. Substituting
the limit of a’(¢, ¢)(#) in (14),

S s
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aJ s

a—F(H) =3 rer KZ(M)-(0(M)-n(M))dl. (20)

1.4 Intermediate conclusions . ) )
Figure 3: The functional J as a function of a and b.

For smooth entering structures, the displacement poten-

tial is the only function for which the ccefficient K4 is plan around the point (a., b, ), illustrating the relation

zero all along the contact line. This relation expresses 9drJ = 0 of equation (21) for the Wagner solution.

that the displacement of the fluid is continuous. Figure 4 plots the solutions of the two optimisation
Thus, it can be deduced from equation (20) that the problems

displacement potential will be the unique function for

which drJ = 0. The Wagner problem is to max Q(a b) and max 3_«7(& b). (24)
a€R Oa berR Ob
oJ
find I' such that ar 0. (21) The intersection of the solution sets of these two equa-

tions is the point that maximises 9,J + 0yJ. It also
Since drJ < 0 for every curve I', and since the Wagner | . oo tpo horm of 10pJ|| = (5. J2 + abjz)l/Q. Tts
solution is obtained for Jp.J = 0, the Wagner problem  rpininym 6.23.10-5 # 0 is obtained for (0.4868,0.4146).
can also be seen as an unconstrained non linear optimi- Very good accordance is reached.
sation problem on I':

0.6
oJ
I'= in|—1|. 22 .
argniﬂm 8F‘ (22) 0.55 : 7
Because of numerical imprecision (space discretisation 0.5 ‘ 7
with elements, numerical integration, etc.), exact equal- 045 - |

ity like in equation (21) may not be possible, leading to ‘
a numerically i1l posed problem. b 04 /’/—\*

Moreover, in two dimensions, it is possible to describe

exactly the contact line I" i.e. the left and right points. 0.35 " |

But in three dimensions, for most general cases, the 03 F i

whole curve can only be approrimated, hence the im- :

possibility to reach exactly drJ = 0. 0.25 - 7
It should then be better to consider the problem under 02 | | | | L |

its optimisation form (22). 702 025 03 035 04 045 05 0.55 0.6

a

2 A two dimensional exa‘mple Figure 4: The dashed line is the solution set of the one dimen-

sional minimisation problem mingeg [0aJ|. The thick line is the
In order to illustrate the previous section, the method solution set of minycg |9,J|. The intersection of these two curves

is tested on an academic case, an inclined parabolic occurs at the point (aw,buw).
wedge. The selected shape for the parabolic wedge is
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3 A three dimensional example

We use in this section the shape optimization technique
on a three-dimensional example, the elliptic paraboloid
2z = 422 + 42, for a penetration depth of 0.1. One of the
interest of this test case is that the contact line is elliptic
(see [SKO01]); thus it can be described by two parameters,
a and b, the semi-axes of the ellipse.

{ z(\)
y(A)
For any given elliptic contact line, it is possible to com-

pute the functional J. Figure 5 presents the values J as
a function of the ellipse parameters a and b.

a - cos(A)
b - sin(\)

(25)

-107°
-107°
-1075
-107°
-107°

0.3

Figure 5: The functional J as a function of the semi axes a and
b of the elliptic contact line I".

As performed for the two-dimensional inclined
parabola, figure 6 plots the solution sets of
maxgeg O (a,b) and maxper OpJ.  The derivatives
of J are computed using a centred finite difference
approximation. The optimum is obtained for a ~ 0.2065
and b 0.3609. These numerical results may be
compared with the analytical solution (0.2069,0.3588)
(see [SKO1]).

~
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a

Figure 6: The dashed line is the solution set of the one dimen-
sional minimisation problem mingeg [0qJ|. The thick line is the
solution set of minyep |0 J|-
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4 Conclusions

A link has been established between the singularity coef-
ficients of the potential and the variations of the func-
tional J with respect to the contact line T.

For the particular case of the two dimensional im-
pact, a 2 degrees of freedom® unconstrained optimiza-
tion problem is set. The method has been illustrated on
the numerical example of an inclined parabolic wedge.

In three dimensions, the method has been applied on
an elliptic paraboloid, showing good agreement with the
analytical results.
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