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1 Introduction

In this work, the linearised theory of water waves is used to investigate problems involving
the interaction of monochromatic incident waves with fixed structures. In particular, the
excitation of a single resonant mode is investigated. There are typically a number of particular
incident wave frequencies for a given structural configuration at which the wave-force (and
wave-motion) attains locally maximum values. These frequencies correspond to the real part
of poles in the scattering and radiation potentials when extended to the complex frequency
domain. In general, the positions of the poles are denoted ω = ω0 − iε where ω0 is resonant
frequency and ε is the decay rate of the resonant mode. Apart from the special case of
trapped modes, the motion in the resonant mode will decay and the energy localised around
the structure will radiate away from the structure until the oscillations occur at the incident
wave frequency only. The complex resonant frequencies will depend on the geometry of the
structure and can be estimated by examining the variation of the hydrodynamic coefficients,
such as the added mass and damping, in the frequency domain.

In previous work on wave-diffraction problems, Eatock Taylor (2006) investigated the
build-up of resonant wave-motion in an array of structures and considered the time for such
build-up to occur. This motivated research concerning the build-up and decay of the os-
cillations of the fluid near a structure in a near-resonant scattering interaction. Using a
time-domain solver, the response of the fluid surrounding a two-element structure was ob-
served to follow a decaying ‘beat’ pattern, i.e. repeated resonant build-up was observed. The
similarity of the fluid response to that of a near-resonant forced damped harmonic oscillator
provided an opportunity to obtain a simple model to predict the principal properties of the
motion, such as amplitude build-up, without fully solving the time-domain problem.

2 Time Domain Computations

The wave-structure interaction considered here involves the diffraction of a planar incident
wave by a fixed structure with two surface piercing elements in a fluid of finite depth.
The structural geometries considered thus far have been restricted to pairs of identical half-
immersed semi-circular cylinders of varying sizes and spacings. The interaction was initially
modelled using the two-dimensional linearised water-wave equations. To fully specify the
problem, conditions for the initial state of the fluid were necessarily prescribed. The time
domain solution of the initial value problem was computed using a cubic spline boundary ele-
ment solver incorporating a fourth order Runge-Kutta method (see McIver, McIver & Zhang
(2003) for details). This boundary element method (BEM) requires the truncation of the fluid
domain via the introduction of two vertical control surfaces outside the near-field region of
the structure. The solution domain is invariant in time because the linearised equations are
used to describe the interaction. Despite these simplifications, these time-domain simulations
are computationally intensive.

To simulate the scattering interaction described above it was necessary to numerically
implement an incident wave-train in the BEM. Two methods were used to generate an incident
wave-train in these time-domain computations. In the first method, initial conditions on the
free-surface specified that a finite wave packet was present in the free-surface section to the left
of the structures at t = 0. The initial wave-profile was that of a right-moving sinusoidal wave-
packet of unit amplitude, with ‘ramped intervals’ at the front and rear of the packet present
to minimise computational instabilities. The scattered waves are absorbed by the combined



effect of an absorption beach (adjacent to each control surface) and the implementation of
each control surface as a piston absorber.

The second method used to generate an incident wave-train was to treat the left-hand
control surface as a piston wave-maker by an appropriate change of the relevant boundary
condition. Therefore, a regular oscillatory term was added to the original absorption boundary
condition, described in detail by McIver et al. (2003), so that the new boundary condition
allowed both the generation of incident waves and the absorption of reflected waves. The
absorption term in the left-hand control-surface boundary condition was retained so as to
minimise computational problems due to artificial reflections. A frequency domain analysis of
the wave-maker problem with this type of boundary condition was necessary to compute the
appropriate control surface velocity amplitude for the generation of a unit-amplitude regular
wave-train. To properly implement the wave-maker boundary condition, it was also necessary
to remove the absorption beach adjacent to the left-hand control surface. This wave-maker
method generates an indefinitely propagating regular wave-train after an initial transient time
interval during which waves of longer wavelength and smaller amplitude occur. In both cases
the regular part of the resultant incident wave-train is identical.

3 Mechanical Oscillator Model

A simple approximation of the response of the fluid between the structural elements to the
incident wave can be found by modelling the interaction process as a damped harmonic oscil-
lator undergoing an oscillatory forcing. However, this model is valid only if the incident wave
excites significantly one resonant mode. If more than one mode is excited, the damped har-
monic oscillator equation will not be sufficiently complex to capture even the basic features
of the wave motion. Therefore, provided the incident wave of frequency ω excites a single
resonant mode of frequency ω0 such that ω ' ω0 the wave-motion of the fluid in the internal
free-surface section between the structures can be described using the equation

χ̈ + 2εχ̇ + ω2
0χ = F (t) (1)

where the decay constant of the resonant mode is ε. The factor of 2 multiplying the χ̇ term is
necessary to produce a decay term in the resonant component of the motion of the form e−εt.
The quantity χ can be any dynamic quantity associated with the motion of the fluid in the
wave-structure interaction. Here, χ is chosen to represent the wave-elevation η at the mid-
point of the free-surface between the structures and thus χ(0) = χ̇(0) = 0. The predictions
from this model are to be compared to the time-domain results for η at the mid-point.

The incident wave is modelled using the forcing F (t) so that during the interaction of the
steady-state part of the wave-train the forcing will be given by F (t) = A sin(ωt + α) where α
is the phase of the forcing relative to the resonant motion. The amplitude A is scaled so that
the first maximum in the beat envelope is equal to that for the time-domain computation. It
is important to note that it is not possible to predict the amplitude of the response and how
it relates to the incident wave since the complexity of the excitation process is beyond the
scope of this model. Nevertheless, the variation of the response with time can be determined
provided the function F (t) approximates the incident wave forcing well. A different forcing
is used to implement the waves resulting from the two generation methods described in § 2.
For the initial wave-profile method the forcing function used has the form

F (t) = (H(t− t1)−H(t− t2))A sin(ωt + α) (2)

and for the wave-maker method the forcing is

F (t) = H(t− t3)A sin(ωt + α) (3)



where H(t) is the Heaviside function. In equation (2), t1 < t2 and both of these times depend
on the initial wave-profile and the group velocity cg whereas in equation (3), t3 was chosen so
the first envelope maximum occurred at the same time as in the time-domain results. Next,
the method for calculating values of ω0 and ε for a given structure is outlined.

4 Complex Resonances — Poles in the Potentials

To obtain a decaying ‘beat’ type response of the fluid near the structure it is necessary that
the frequency of the structure’s (primary) resonant mode be similar to that of the incident
wave. Furthermore, the incident wave should excite significantly only one complex resonance
with frequency ω0 and no others so that the response is dominated by the forced motion and
one resonant motion. This is necessary in order to apply the mechanical oscillator model to
approximate the response. Therefore, the complex resonant frequency of the given structure
near the incident wave frequency must be determined to ensure the previous requirements are
satisfied and also to enable the computation of an approximate solution from equation (1).

The method for obtaining an estimate for the resonant frequency ω0 and the decay con-
stant ε is the same as that used by McIver et al. (2003). This requires the computation of the
frequency dependence of the hydrodynamic coefficients in the neighbourhood of the resonant
frequency. Thus, assuming the resonance is a vertical pumping mode, the heave-heave com-
ponents of the added mass and damping coefficient matrices, denoted a33 and b33 respectively,
must be computed. It should be noted that this method is only accurate in the case where the
pole lies close to the real-ω axis so that a small value of ε gives a more accurate computation.
Determining the position of the pole ω = ω0−iε from the added mass and damping coefficients
is possible because the existence of a pole in the heave potential φ3 implies the presence of a
corresponding pole in the complex force coefficient, as can be seen from the definition

f33(ω) = iω

∫∫
SB

φ3n3dS = iω

(
a33 +

ib33

ω

)
. (4)
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Figure 1: Variation of the added mass µ (—)
and damping coefficient ν (– –) with frequency
near the resonant frequency.

Thus, if the non-dimensional forms of the
added mass and damping are denoted by µ and
ν respectively, the presence of a pole in the
force coefficient implies that

µ + iν ∼ − A
ω − (ω0 − iε)

as ω → ω0 − iε.

(5)
Given that A > 0, the damping coefficient will
always be positive and will have a minimum
value at ω = ω0. The added mass coefficient,
on the other hand, will have a local maximum
and minimum at ω = ω0− ε and ω = ω0 + ε re-
spectively. This behaviour can be observed in
figure 1 where µ and ν are plotted in the neigh-
bourhood of the resonant frequency for the par-

ticular structural geometry described next.
The results presented in figure 1 pertain to the non-dimensionalised linear water-wave

equations with a structure comprising of two circular cylindrical elements with radii of 0.3
and centres positioned a distance 0.7 apart. The added mass and damping were computed
at increments of ∆ω = 0.01 on the frequency interval [1.75, 2.1]. The maximum damping
occurred at ω = 1.909 and the maximum and minimum added mass occurred at the frequencies
1.885 and 1.928 respectively; thus, ω0 ' 1.909 and ε ' 1.928−1.885

2
' 0.021.
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Figure 2: Free-surface elevation η as a function of time t at the mid-point between the structural
elements for the incident wave imposed as an initial wave-profile ((a) and (c)) and for the incident
wave generated by the wave-maker ((b) and (d)).
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Figure 3: Free-surface elevation η as a function of time t at the mid-point between the structural
elements for the initial wave profile (a) and wave-maker (b) generated incident wave trains. The
mechanical oscillator model predictions (—) are compared to the BEM results (−−).

5 Results

The results of the mechanical oscillator model are compared to the time domain solution
here for both types of incident wave-train. The regular part of the incident wave is specified
to have a frequency of ω =

√
4 tanh 4 (corresponding to a wavenumber k = 4) where the

time-domain equations were non-dimensionalised prior to their numerical implementation.
The first set of results, shown in figure 2, correspond to the structure geometry analysed in
the last section. The time-domain solutions are shown in diagrams (a) and (b) while the
corresponding mechanical oscillator results are shown in diagrams (c) and (d) of figure 2. It
can be seen that the mechanical oscillator results give a satisfactory approximation to the
build-up and decay of the resonant motion. In figure 3, the details of the ‘fast’ oscillations
are removed from the response plots corresponding to two circular cylinders of radius 0.35
and with centres a distance 0.8 apart. This emphasises the overall shape of the response
envelope, which is of primary interest, and allows a straightforward comparison of the results.
A reasonable agreement is again found for both types of incident wave.
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