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Introduction

At the last Workshop, Eatock Taylor et al. (2006) first
attempted to investigate the time domain buildup to
linear near-trapping by an array of cylinders, excited
by a regular wave train generated by a wavemaker. The
particular interest was the number of cycles required in
practical terms to reach a steady state of near-trapping,
following the startup of a wavemaker with an initial
condition of still water. In the discussion, Meylan sug-
gested that the buildup must be related to the imag-
inary part of the complex wavenumber corresponding
to perfect trapping: i.e. the complex root of the coef-
ficient matrix governing the solution of the diffraction
problem for the array of cylinders. In this presenta-
tion we will provide the evidence for this suggestion,
through use of the theory of scattering frequencies.

Scattering frequencies, also called resonances and
sometimes complex eigenvalues, are poles of the an-
alytic continuation of the scattering operator (or the
resolvant). They occur in many linear scattering pro-
cesses, not just linear water waves. In the context of
water waves they have been investigated by Hazard &
Lenoir (1993)and Hazard & Lenoir (2002) for the case
of arbitrary two-dimensional bodies (although calcula-
tions were presented only for special cases) and Meylan
(2002) where the theory was developed to the point of
giving a complete description of the motion in the time-
domain but only for the very simple problem of a plate
floating on water of shallow draft. We apply the theory
of scattering frequencies to the simple case of scatter-
ing by bottom mounted cylinders. This reduces the
problem to scattering by disks with Neumann bound-
ary conditions for the two-dimensional Helmhotz equa-
tion. It avoids many of the difficulties associated with
the analytic continuation because there is only a sin-
gle wavenumber which can be treated as the parameter
(as opposed to the frequency) so that the analytic con-
tinuation is relatively simple. This problem has also
been studied by Evans & Porter (1997) who actually
calculated the scattering frequencies (without naming
them) but who did not make any further calculations.

Interaction theory for cylinders

The equations for diffraction of regular waves by ver-
tical cylinders are well known: see for example Linton
& Evans (1990) whose equations are in turn based on
the interaction theory of Kagemoto & Yue (1986). Us-
ing standard notation for Bessel functions etc we may
write them, after truncation of the infinite series, in the
form:
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Here Nc is the number of cylinders, each of radius a
and centred at (xc, yc); k is the wavenumber of a wave
incident at an angle χ; Al

µ is the coefficient of the µth
Fourier harmonic of scattering by the lth cylinder; ϕjl

is the angle between the cylinders; and

D̃l
ν = eik(xc cos χ+yc sin χ)eiµ(π/2−χ)

represents the incident wave field at the lth cylinder.
This can be written as a matrix equation for the

unknown vector a of coefficients Al
µ :

M (k)a+ a = f .

We do not give here an explicit expression for the coeffi-
cients of M for brevity, but they follow obviously from
equation (1). Note that we have explicitly expressed
the dependence of the matrix M on the parameter k.
This equation is typical of scattering problems, in that
we have a matrix (or operator) plus the identity. This
is because the scattering process is a perturbation of
the incident wave, and in the absence of scattering we
have simply the identity. Exactly such an equation ap-
pears in Hazard & Lenoir (1993). The explicit solution
to the scattering problem is of course given by

a =(I+M (k))
−1

f (2)

where I is the identity matrix and f is the appropriate
right hand side. If we allow the parameter k to become



74

22nd IWWWFB, Plitvice, Croatia 2007 22nd IWWWFB, Plitvice, Croatia 2007

complex then the zeros of the matrix I+M (k) (which
are equivalent to the eigenvalues of the matrix M (k)
with eigenvalue 1) are the scattering frequencies. We
can study eitherM (k) (as was done in Hazard & Lenoir
(1993) ) or I+M (k) (as was done in Evans & Porter

(1997)) and the solution is equivalent. (I+M (k))
−1

is called the resolvant, so that the scattering frequen-
cies are the singularities of the analytic continuation of
the resolvant. While the matrix M (k) must be ana-
lytic, there is no requirement for it to be meromorphic,
i.e. we have have arbitrary branch cuts, accumulation
points of zeros, etc. Even in very well behaved situa-
tions (such as Meylan (2002)) there will be an infinite
number of zeros. One of the challenges with the present
problem is to try to understand the properties of this
continuation and this remains an open question. It is
possible to represent the solution in the time-domain
as a sum over the scattering frequencies plus other con-
tributions and this method is known as the singularity
expansion method (SEM). We also note that, due to
causality, the scattering frequencies only occur in the
lower half plane, and that for very special situations
a purely real zero can occur (i.e. for trapped modes).
For the case of scattering by a finite array of cylinders
in an unbounded domain, we do not expect to find any
trapped modes.

The aim of the present work is to examine what
happens when the scattering frequencies become close
to the real axis. In this situation of near-trapping,
there can be very large amplitudes in the response. We
consider especially symmetric arrangements of identi-
cal cylinders such as were studied by Evans & Porter
(1997). This allows us to make predictions of the re-
sponse in the time and frequency domain. The work is
still in progress and we present here only our prelimi-
nary results.

Eigenvector expansion of the scat-

tering response

Suppose we have a scattering frequency at a complex
wavenumber k0 close to the real axis. Then we know
that there is a pole of the scattering operator at k0 so
near the pole we can write the scattering operator as

(I+M(k))−1
≈

A(k)

k − k0

where A(k) is a generalisation of the residue which is
connected with a projection onto the eigenspace asso-
ciated with k0. We are assuming that there is a sim-
ple zero at k0 (in some special cases there may be a
double root, requiring a relatively simple extension of
the theory presented here). Finding A(k) is straight-
forward. The scattering frequency k0 is associated with
an eigenvector with zero eigenvalue. That is, we have
an eigenvector uk0

with the properties that

(I+M(k0))uk0
= 0.

Near the point k0 it can be shown that (Steinberg
(1968))
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, written as a row vector, is the eigenvector
of the adjoint operator with eigenvalue zero. Note that
a very important property of the operator is that this
occurs at k∗
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This means that we can approximate the solution to
equation (2) near the point k0 as
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. (3)

More generally, to capture the behaviour near a set
of scattering frequencies, we can write the response as
a sum of such contributions from each of the corre-
sponding poles. At present we have established only
that this approximation is correct near the scattering
frequencies and the properties of the more general ex-
pansion remain open. We hope to give more details at
the workshop.

Results

We present here some example calculations for an ar-
ray of four vertical cylinders whose centres are at the
corners of a square of side 2d, with a/d = 0.7. More
extensive results and discussion will be provided in the
presentation. The acceleration due to gravity is taken
as 1. The geometry is one of the cases studied by Evans
& Porter (1997), who identified a scattering frequency
close to the real axis that excites a near-trapping re-
sponse at k0a = 3.0502+0.00195i. These and some oth-
ers are shown in Figure 1. Note that this figure shows
many more scattering frequencies than were found by
Evans & Porter (1997). Also, the scattering frequen-
cies appear to be quite numerous and no pattern is
discernible in their location. This is in contrast to the
regular pattern in the scattering frequencies found by
Meylan (2002). Finding all the zeros in a given region
is a demanding computational problem. We use here
a method based on a generalised bisection method de-
scribed in Meylan & Gross (2003). Just as finding the
eigenvalues provides an inefficient way to solve a linear
system, the solution using scattering frequencies would
be an inefficient way to determine the response at a
given frequency (even if this were possible, which has
not been established). The purpose of the scattering
frequencies is to allow a deeper understanding of the
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system response, just as can be obtained from eigen-
values. Also note that, just as for a matrix where the
difficult part is to find the eigenvalues, the computa-
tional challenge here is to find the scattering frequen-
cies.

We compare results from the ”exact” calculation
based on equation (1) truncated at N = 5 with the ap-
proximation using the sum of contributions from near
the poles we have found. In the approximation, the
derivative M

(1) is obtained by simple numerical differ-
encing.
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Fig. 1: Location of the zeros near the real axis.

Figure 2 shows two wave profiles evaluated at the
near trapping wavenumber k0a = 3.0502. The upper
subplot is the modulus of the elevation (divided by in-
cident wave amplitude) along a line bisecting two op-
posite sides of the square array in the case of a wave
propagating parallel to that line (β=0 deg). The lower
subplot is the corresponding profile along a diagonal of
the square when the wave propagates along the diag-
onal (β = 45deg). In the latter case a very large ele-
vation (≈ 12) is observed on the two inner faces of the
cylinders located on this diagonal, and this is fairly well
predicted by the approximation. For the β = 0deg case
at this wavenumber, however, the magnification (which
is largest along the line shown) is only about 2, and the
approximation fails to capture this. Indeed, if only the
scattering frequency corresponding to k0a = 3.0502 is
retained in the summation, the line labelled ”‘approx”’
becomes a straight line at the value 1, corresponding to
no scattering. This is because the corresponding eigen-
vector is orthogonal to the forcing function associated
with a wave incident at 0 deg.

Figure 4 shows sections of the time history of ele-
vation at the upwave point on the downwave cylinder
when a wave with k0a = 3.0502 at 45 deg is generated
by a wavemaker, and the wave front encounters the
structure (calculated using the approach described in
Eatock Taylor et al. (2006)). It may be seen that in this
case of near trapping by very closely spaced cylinders,
where the imaginary part of the scattering frequency
is very close to the real axis, it takes of the order of
800 periods to achieve close to steady state near trap-
ping. This can also be seen in figure 3, where the dot-

ted line is the envelope of the peaks of the increasing
wave elevation over 830 periods. The other two lines
give two approximations to this envelope. The first,
labelled expfit1, is an exponential curve with argument
µ1t, where µ1 = �

�

(k0) = −0.00195 for a = 1. The
amplitude A1 of this exponential is the near trapping
result 12.23 obtained from the frequency domain anal-
ysis. The line has been fitted by a simple horizontal
translation to match the temporal offset in the incom-
ing wave. The second approximation, labelled expfit2,
is an exponential fit in which three coefficients, the ar-
gument, the amplitude, and the offset, are fitted to the
peaks represented by the dotted line. The relevant fit-
ting parameters are A2 = 11.92, µ2 = 0.00190. It is
clear that the peaks are well fitted by an exponential
defined by expfit2. The difference between these and
the fit based on the scattering theory is most probably
due to inaccuracy in the time domain numerical anal-
ysis which yields the dotted line labelled peaks. It is
based on a numerical integration, which requires a very
small frequency increment to capture the highly tuned
response at the near trapping frequency.
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Fig. 2: Dimensionless wave profiles at near-trapping for waves at 0 and 45 degrees
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Fig. 3: Build-up of elevation at cylinder in wave generated by wavemaker at near-trapping frequency
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Fig. 4: Envelope of build-up to near-trapping, compared with scattering frequency theory and curve fit




