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Introduction

In open ocean, floating bodies may encounter so-called freak or rogue waves. Such events constitute a
major problem for both structure integrity and human safety. Thus, the knowledge of these extreme
sea-states and the capability of models to reproduce it precisely are therefore crucial. In this paper, we
report on recent results obtained on freak waves formation and particularly in 3D simulations. A time
accurate fully nonlinear potential flow model has been developed to simulate the propagation of gravity
waves in 2D or 3D. This model relies on a periodic Higher-Order Spectral (HOS) technique based on
the original HOS model of West et al. [7] and Dommermuth and Yue [3]. We propose 3D long-time
simulations of typical North Sea wave fields in which freak waves are detected. Then, an analysis of the
3D shape of these extreme events is proposed and the influence of the directionality is discussed.

Description of numerical model & simulations

We use a HOS model which is an enhanced version of the order-consistent scheme initially proposed by
West et al. [7] and extensively validated. Specific attention has been paid to the aliasing phenomenon
as well as the numerical efficiency (see e.g. Bonnefoy [1]). This allows to simulate hundreds of spectral
peak periods on a large ocean domain with a typical single processor computer.

We work on a periodic unbounded domain representing a part of the ocean with infinite depth (extension
to finite depth is direct). Using the potential flow theory and following Zakharov [8], the fully-nonlinear
free surface boundary conditions can be written in terms of surface quantities, namely the single-valued
free surface elevation η and the surface velocity potential φs(x, t) = φ(x, η, t) (φ is the velocity potential):
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In this way, the only remaining unknown is the veretical velocity ∂φ
∂z

. This quantity will be evaluated
thanks to the order-consistent HOS scheme of West et al. [7]. The HOS formulation allows us to use a
very efficient FFT-based solution scheme with numerical cost growing as Nlog2N , N being the number
of modes. Then, the two surface quantities are time marched using an efficient 4th order Runge-Kutta
scheme with an adaptative step-size control associated to an acceleration procedure. This acceleration
is based on an analytical integration of the linear part of the equations (see e.g. Fructus et al. [4]).
Nonlinear products appearing in free surface boundary conditions (Eqs. (1) & (2)) as well as in the
HOS procedure are carefully dealisaed (see e.g. Bonnefoy [1]).

In this paper we present long-time evolutions of 3D wave fields that are analysed to detect freak events.
An important point is the initialization of the wave field. Indeed, we will just let a specified initial
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solution evolve. Dommermuth [2] indicates that the definition of adequate initial solution to start fully
nonlinear computations is not an easy task and can lead to numerical instabilities. However, the solution
proposed in [2] is based on a simple linear initialization followed by a transition period between linear
and fully nonlinear conditions. We have applied a similar relaxation period, over a duration Ta = 10Tp,
Tp being the spectrum peak period. For more details, see Dommermuth [2].

Initial conditions are similar to those of Tanaka [6]. A classical directional spectrum Φ(ω, θ) is defined:

Φ(ω, θ) = ψ(ω)×G(θ)

In this study, we use a JONSWAP spectrum:
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with α being the Phillips constant and ωp the angular frequency at the peak of the spectrum.

α = 3.279E, γ = 3.3, σ =


0.07 (ω < 1),
0.09 (ω ≥ 1)

E is the dimensionless energy density of the wavefield. The significant wave height could be estimated
by Hs ≈ 4

√
E and the directionality is defined as follows:
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Then, initial free surface elevation η and surface velocity potential φs are computed from this directional
spectrum definition. The mean direction is along the x-axis, the y-axis defining the transverse direction.
The numerical conditions chosen in the following simulations are:

• Wave field characterized by E = 0.005 i.e. α = 0.016, Hs = 0.28 in non-dimensional quantities
(with respect to g and ωp),

• Domain length: Lx = 42λp × Ly = 42λp (λp is the peak wavelength),

• Number of modes used: Nx = 1024×Ny = 512, HOS order M = 5,

• Dimensional quantities give, if we fix Tp = 9.5s (typical in North Sea): Hs = 6.2m and λp = 140m.
Dimensional domain area: 5740m× 5740m.

Long-time simulations of such 3D wave fields are performed. During these computations, extreme
events naturally appear within the wavefield which is a typical sea-state that could be encountered in
North Sea. These are not forced freak waves which can be generated through directional focusing or
development of Benjamin-Feir instability. An example of freak event is shown in Fig. 1 with a closer
view made in Fig. 2. In the present paper, freak waves are defined as waves with heights exceeding
the significant wave height Hs by a factor in 2.2 (see e.g. several papers in the recent Rogue Waves
Workshop (2005)). We choose to define the wave height as the height of waves taken along the mean
direction of propagation (x-axis). We perform zero up-and-down crossing analyses on each mesh line
along the x-axis. The freak waves are thus detected by applying the criterion defined above.
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Figure 1: 3D surface elevation of the extreme
event at t = 26.5Tp

Figure 2: Zoom on the 3D extreme event t =
26.5Tp, Hmax = 2.44Hs

Influence of directionality

In this section we investigate the influence of directionality on freak waves formation. Indeed, it appears
that this parameter plays a key role in the occurence of these events. We choose three different values
of n (c.f. definition of directionality Eq. (3)). First, simulations were performed with n = 2 following
Tanaka [6], then we choose more ‘realistics’ choices of directionality: n = 30 & 90. I remind here that
when n rises the directional spreading of the wave field decreases. These are long-time simulations over
250 wave spectrum peak periods.
The occurence and shapes of the freak events are recorded all along the simulations. The extreme
interesting events are detected as explained in the previous section and a transverse analysis is also
made. Namely, once we detect the position (x, y) of a freak event, we perform a zero-crossing analysis
in the transverse direction. In this way, we are able to determine the length as well as the width of the
freak events. This is plotted in the next figures for the 3 different values of the directionality parameter
n. Each rectangular box represents a freak wave with its own measured dimension (Lx, Ly) being the
spatial extent of the extreme event.

Figure 3: Freak events in the
computational domain. n = 2

Figure 4: Freak events in the
computational domain. n = 30

Figure 5: Freak events in the
computational domain. n = 90

Fig. 3 gives some information about the freak events with such a large directional spreading (n = 2).
The corresponding extreme events seem to have a rather short transverse extent. Another interesting
feature of this figure is that it allows us to observe that the appearing freak waves are either isolated
events (see e.g. (x/λp, y/λp) = (16, 38)) or part of a group of extreme events that remain coherent
for several periods in a row (see e.g. (x/λp, y/λp) = (6, 10)). For this broad directional spectrum, the
coherent group can last up to 15 peak periods.
Then, when comparing with Fig. 4 (n = 30), we observe, as expected, that the mean transverse
wavelength is enlarged. This tendency is confirmed with Fig. 5 (n = 90). With these latter 2 more
realistic choices of directionality parameter n, we observe the formation of the commonly described ‘wall
of water’ (see e.g. review of observed freak waves by Kharif and Pelinovsky [5]). Isolated and groups
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of freak waves also appear, however the extreme events remain rather localized in space and time (the
longest life time of such event does not exceed 5 peak periods of propagation for n = 90).

An important observation is that the num-Number of Mean of Mean transverse
freak events Hmax/Hs wavelength Ly

n = 2 2350 2.13 2.1 λp

n = 30 756 2.05 4.3 λp

n = 90 443 2.0 5.8 λp

Table 1: Influence of directionality parameter n

ber of detected freak waves grows with the
spreading of the wave field. Table 1 reports
the number of freak events as well as the mean
of Hmax/Hs and the mean transverse wave-
length Ly for each simulation. The parameter
Hmax/Hs represents a good indication on the
encountered global wave field. It is evaluated

at each time step on the whole fluid domain (a very large domain is computed explaining the high value
of the parameter) and the mean along the whole time of simulation is calculated. This mean and the
number of observed extreme events both decreases when the directionality parameter increases. The
occurence of extreme events is thus closely linked to the directionality as well as the transverse extent
of the extreme wave. Further analysis will be done once the parallelization of the model is achieved.
It will made accessible statistical analyses on 3D extreme waves, allowing computations on larger 3D
domain over longer times of simulation.

Conclusion

In this paper we have pointed out the ability of our model to modelize natural occurence of freak
wave events. The efficiency of our HOS model allows us to perform 3D long-time computations on
large domains (here typically simulations lasts for 250 wave peak periods with more than 30km2 of
ocean computed). An original analysis of the 3D shape of the freak waves is presented and particularly
the influence of the directionality is presented. This typical 3D parameter seem to play a key role
in the occurence of the freak waves. The results obtained are really encouraging for the pursuit of
investigations in this domain with our HOS model. More systematic studies over repeated long-time
simulations are in particular required to obtain stochastically significant results. This will be possible
once the parallelization of the code is achieved.
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