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1. Introduction

The classical problems of water wave scattering by
two thin vertical barriers which are either partially
immersed upto the same depth or completely sub-
merged from the same depth and extending infinitely
downwards in deep water admit of explicit but com-
plicated solutions. The problem of two partially im-
mersed barriers was first solved explicitly by Levine
and Rodemich(1985) and later approximately by Evans
and Morries(1972) (hereinafter referred to as LR and
EM respectively). LR obtained the explicit expres-
sions for the reflection and transmission coefficients
in terms of six definite integrals, which involve com-
plicated functions of elliptic integrals by employing
Schwartz-Christoffel transformation of complex vari-
able theory in a somewhat complicated manner. The
complementary problem of two submerged barriers was
investigated by Jarvis(1971) using a similar procedure.
An alternative and simple method based on solution
of coupled Abel integral equations is proposed here to
solve the two-barrier problem of LR. This method is
based on Fourier analysis for the expansion of the ve-
locity potential function, known as Havelock’s expan-
sion. Ultimately the reflection and transmission coef-
ficients are obtained explicitly in terms of one modi-
fied Bessel function and two definite integrals involv-
ing Bessel function which can be computed numerically
fairly easily. These integrals are definitely simpler than
the integrals obtained by LR. When the two barriers
are closely spaced, the expressions for R and T reduces
to those for a single barrier which was obtained by
Ursell(1947). Also when the two barriers are widely
separated, then the expressions for R and T coincide
with the results obtained by LR and EM. Choosing
the same set of values of different parameters as taken
by EM, |R| is depicted graphically against the wave
number in a number of figures and these curves almost
coincide with the corresponding curves given in EM.

2. Mathematical formulation and so-
lution

Assuming linearised theory and irrotational motion,
the problem of our interest is to solve for φ(x, y) satis-
fying

∇2φ = 0, −∞ < x < ∞, y ≥ 0, (1.1)

kφ+ φy = 0 y = 0, (1.2)

φx = 0, x = ±a, 0 < y < h, (1.3)

r1/2∇φ = O(1) as r = {(x∓a)2+y2}1/2 → 0, (1.4)

∇φ → 0 as y → ∞, (1.5)

φ(x, y) ∼

�

Tφ0(x, y) as x → ∞,
φ0(x, y) +Rφ0(−x, y) as x → −∞,

(1.6)
where Re{φ0(x, y)e

−iσt} denotes the velocity poten-
tial described in the fluid region (e−iσt being dropped
throughout), T and R denote the unknown transmis-
sion and reflection coefficients, e−ky+ikx is the poten-
tial of the wave train incident from the direction of
x = −∞, x = ±a, (0 < y < h) denote the positions
of the two barriers partially immersed upto a length h
below the mean free surface y = 0, y-axis being taken
vertically downwards into the fluid region.
We now solve the BVP described by (1.1) to (1.6) by

reducing it to a pair of coupled Abel integral equations.
Using Havelock’s expansion of water wave potential (cf.
Ursell(1947)), φ(x, y) can be expressed as φ(x, y)

=
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

e−ky(eikx +Re−ikx) +
2

π

� ∞

0

A(ξ)L(ξ, y)eξxdξ,

x < −a,

e−ky(αeikx + βe−ikx) +
2

π

� ∞

0

{B(ξ)eξx

+C(ξ)e−ξx}L(ξ, y)dξ, − a < x < a,

Te−ky+ikx +
2

π

� ∞

0

D(ξ)L(ξ, y)e−ξxdξ, x > a,

(2.1)
where L(ξ, y) = ξ cos ξy − k sin ξy, α,β are unknown
constants, A(ξ), B(ξ), C(ξ) and D(ξ) are unknown
functions such that the integrals in (2.1) and in the
mathematical analysis below in which they appear, are
convergent.
Using the condition of continuity of φx across the

lines x = ±a, y > 0, we obtain two relations in-
volving the unknown functions A(ξ), B(ξ), C(ξ), D(ξ)
under integral sign and the four unknown constants
α, β,R, T . Use of Havelock’s inversion theorem (cf.
Ursell(1947)) to each of these two relations gives rise
to four equations, given by

e−ika−Reika = αe−ika−βeika, T eika = αeika−βe−ika,
(2.3)

A(ξ) = B(ξ)− C(ξ)e2ξa, D(ξ) = C(ξ)−B(ξ)e2ξa.
(2.4)

Again, continuity of φ across the gap x = ∓a, y > h
(using (2.4)) produces two integral equations in B(ξ)
and C(ξ) for y > h and using the condition (1.3), we
obtain another two integral equations in B(ξ) and C(ξ)
for 0 < y < h. These can be farther reduced by simple
integration to
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� ∞

0

C(ξ)eξa sin ξydξ =
π

4k
(β −R)e−ky+ika, y > h,

(2.5)
� ∞

0

B(ξ)eξa sin ξydξ =
π

4k
βe−ky−ika, y > h, (2.6)

� ∞

0

ξ
�

B(ξ)e−ξa − C(ξ)eξa
�

sin ξydξ

= −
iπ

2

�

αe−ika − βeika
�

sinh ky, 0 < y < h, (2.7)
� ∞

0

ξ
�

B(ξ)eξa − C(ξ)e−ξa
�

sin ξydξ

= −
iπ

2

�

αeika − βe−ika
�

e−ky, 0 < y < h. (2.8)

Denoting left sides of (2.8) and (2.7) by the unknown
functions g1(y) and g2(y) respectively for y > h and
using the sine inversion formula, B(ξ) and C(ξ) are
obtained in terms of integrals involving g1(y) and g2(y).
Substituting these in (2.5) and (2.6), we obtain two
coupled integral equations for g1(t) and g2(t) as given
by for

1

π

� ∞

h

g1(t)K1(t, y)dt−
1

π

� ∞

h

g2(t)K2(t, y)dt = f1(y),

y > h, (2.9)

1

π

� ∞

h

g1(t)K2(t, y)dt−
1

π

� ∞

h

g2(t)K1(t, y)dt = f2(y),

y > h, (2.10)

where
(K1,K2)(t, y) =

� ∞

0

sin ξt sin ξy

ξ sinh 2ξa

�

e2ξa, 1
�

dξ,

(f1(y), f2(y))=
π

4k
e−ky

�

βe−ika, (β −R)eika
�

+
i

2

�

αeika − βe−ika
�

� h

0

sinh kt (K1,K2) (t, y)dt

−
i

2

�

αe−ika − βeika
�

� h

0

sinh kt (K2,K1) (t, y)dt.
(2.11)

Addition and substraction of (2.9) and (2.10) produces
the decoupled equations

1

π

� ∞

h

g(t)K(t, y)dt = f(y), y > h, (2.12)

1

π

� ∞

h

G(t)L(t, y)dt = F (y), y > h, (2.13)

where
(g,G) (t) = g1(t)∓ g2(t), (f(y), F (y)) = f1(y)± f2(y)

(K,L) (t, y) = K1(t, y)±K2(t, y). (2.14)

The kernels K(t, y) and L(t, y) are given by

K(t, y) =
1

2
ln

�

�

�

�

y + t

y − t

�

�

�

�

+
1

2
ln

�

�

�

�

cothπy
2a + coth

πt
2a

cothπy
2a − cothπt

2a

�

�

�

�

,

L(t, y) =
1

2
ln

�

�

�

�

y + t

y − t

�

�

�

�

+
1

2
ln

�

�

�

�

cosechπy
2a + cosech

πt
2a

cosechπy
2a − cosech πt

2a

�

�

�

�

.

(2.15)
Now substituting t = 1/t1 and y = 1/y1 in (2.12) and
(2.13) we get for 0 < y1 < h1(= 1/h),

1

π

� h1

0

g1(t1)K1(t1, y1)dt1 = f1(y1), (2.16)

1

π

� h1

0

G1(t1)L1(t1, y1)dt1 = F1(y1), (2.17)

where g1(t1)=g(1/t1)/t
2
1,K1(t1, y1)=K(1/t1, 1/y1), f1(y1) =

f(1/y1) etc. Using the result that

1

2
ln

�

�

�

�

ψ(y) + ψ(t)

ψ(y)− ψ(t)

�

�

�

�

=

� min(ψ(y),ψ(t))

0

ψ�(η)ψ(η)

[{ψ2(y)− ψ2(η)} {ψ2(t)− ψ2(η)}]
1/2

dη,

where ψ(y) is an increasing function, the integral equa-
tion (2.16) reduces to the coupled Abel type integral
equation
� y1

0

A1(y1, η)p(η)dη +

� y1

0

B1(y1, η)q(η)dη = f1(y1),

0 < y1 < h1, (2.18)

in p(η), q(η) where

p(η) =

� h1

η

g1(t1)

(t21 − η2)
1/2

dt1,

η2q(η) =

� h1

η

g1(t1)
�

coth2 π
2at1

− coth2 π
2aη

�1/2
dt1,

so that p(h1) = 0, q(h1) = 0, f1(0) = 0. Elimination
of g1(t1) from the expressions of p(η) and q(η) produces

� h1

y1

A2(y1, η)p(η)dη −

� h1

y1

B2(y1, η)q(η)dη = 0,

0 < y1 < h1. (2.19)
In (2.18) and (2.19)

A1(y1, η)=η(y
2
1-η

2)−
1

2 , A2(y1, η)=η(η
2-y2

1)
−1/2,

B1(y1, η) =
πcoth π

2aη

2a sinh2 π
2aη

�

coth2 π

2at1
− coth2 π

2aη

�− 1

2

,

B2(y1, η) =
πcoth π

2aη

2a sinh2 π
2aη

�

coth2 π

2aη
− coth2 π

2at1

�− 1

2

.

Similarly, the integral equation (2.17) is equivalent
to the coupled Abel integral equations
� y1

0

C1(y1, η)P (η)dη+

� y1

0

D1(y1, η)Q(η)dη = F1(y1),

0 < y1 < h1, (2.20)
� h1

y1

C2(y1, η)P (η)dη −

� h1

y1

D2(y1, η)Q(η)dη = 0,

0 < y1 < h1, (2.21)

where C1(y1, η)=η(y
2
1-η

2)−
1

2 , C2(y1, η)=η(η
2-y2

1)
−1/2,

D1(y1, η)=
−πcoth π

2aη

2a sinh2 π
2aη

�

cosech2 π

2at1
− cosech2 π

2aη

�− 1

2

,

D2(y1, η)=
−πcoth π

2aη

2a sinh2 π
2aη

�

cosech2 π

2aη
− cosech2 π

2at1

�− 1

2

,

P (η) =

� h1

η

G1(t1)

(t21 − η2)
1/2

dt1,

η2Q(η) =

� h1

η

G1(t1)
�

cosech2 π
2at1

− csech2 π
2aη

�1/2
dt1.
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3. Solution of coupled Abel integral
equation

The coupled Abel integral equations(2.18) and
(2.19) are rewritten as
� x1

0

A1(x1, η)p(η)dη +

� x1

0

B1(x1, η)q(η)dη = f1(x1),

0 < x1 < h1, (3.1)
� h1

x1

A2(x1, η)p(η)dη −

� h1

x1

B2(x1, η)q(η)dη = 0,

0 < x1 < h1, (3.2)

We introduce a new complex unit j(= (−1)1/2) differ-
ent from the complex unit i used earlier, to define the
complex variable z = x1 + jy1, and let

Ψ1(z) =

� h1

0

A2(z, η)p(η)dη,

Ψ2(z) =
π

2a

� h1

0

B2(z, η)q(η)dη.

Then Ψ1(z), Ψ2(z) are analytic in the complex z-
plane cut along the real axis from −h1 to h1. Let
Ψ±

j (x) = limy→±0Ψj(z) (j = 1, 2). We find for 0 <
x1 < h1,

Ψ±
1 (x)=± j

� x1

0

A1(x1, η)p(η)dη+

� h1

x1

A2(x1, η)p(η)dη,

Ψ±
2 (x)=± j

� x1

0

B1(x1, η)q(η)dη+

� h1

x1

B2(x1, η)q(η)dη,

and for −h1 < x1 < 0

Ψ±
1 (x)=∓ j

� −x1

0

A1(x1, η)p(η)dη+

� h1

−x1

A2(x1, η)p(η)dη,

Ψ±
2 (x)=∓ j

� −x1

0

B1(x1, η)q(η)dη+

� h1

−x1

B2(x1, η)q(η)dη.

Thus for −h1 < x1 < 0,

Ψ±
l (x1) = Ψ

±
l (−x1), l = 1, 2 (3.3)

where the bar denotes the complex conjugate.Thus for
0 < x1 < h1,

� x1

0

A1(x1, η)p(η)dη =
Ψ+

1 (x1)−Ψ
−
1 (x1)

2j
,

� h1

x1

A2(x1, η)p(η)dη =
Ψ+

1 (x1) + Ψ
−
1 (x1)

2
, (3.4)

and
� x1

0

B1(x1, η)q(η)dη =
Ψ+

2 (x1)−Ψ
−
2 (x1)

2j
,

� h1

x1

B2(x1, η)q(η)dη =
Ψ+

2 (x1) + Ψ
−
2 (x1)

2
. (3.5)

Using these relations in (3.1) and (3.2), we obtain two
relations involving Ψ±

1 (x1) and Ψ
±
2 (x1) for 0 < x1 <

h1. These relations can be extended to −h1 < x1 < 0
by using (3.3) and the fact that f1(x1) is real with
respect to j. Thus for −h1 < x1 < h1

(Ψ+
1 (x1) + Ψ

+
2 (x1))− (Ψ

−
1 (x1) + Ψ

−
2 (x1)) = 2jl(x1),

(3.6)
(Ψ+

1 (x1)−Ψ
+
2 (x1)) + (Ψ

−
1 (x1)−Ψ

−
2 (x1)) = 0. (3.7)

where l(x1) = f1(x1) for 0 < x1 < h1 and −f1(−x1)
for −h1 < x1 < 0. Thus (3.6)and (3.7) define two in-
dependent Riemann Hilbert problems for the functions

Ψ1(z) +Ψ2(z) and Ψ1(z)−Ψ2(z) analytic in the com-
plex z-plane cut along the real line from −h1 to h1.
Noting that Ψ1(z) = O

�

z−1
�

, Ψ2(z) = O
�

z−1
�

, as
z → ∞ we obtain the solution of (3.6) and (3.7) as

Ψ1(z) + Ψ2(z) =
1

π

� h1

−h1

l(η)

η − z
dη, (3.8)

Ψ1(z)−Ψ2(z) =
C0

(h2
1 − z2)

1/2
. (3.9)

where C0 is an arbitrary constant.Thus for 0 < x1 <
h1,

2Ψ±
1 (x1) = ±jf(x1) +

1

π

� h1

0

f(η)

η − x1
dη

+
1

π

� h1

0

f(η)

η + x1
dη ±

C0

(h2
1 − x2

1)
1/2

,

2Ψ±
2 (x1) = ±jf(x1) +

1

π

� h1

0

f(η)

η − x1
dη

+
1

π

� h1

0

f(η)

η + x1
dη ∓

C0

(h2 − x2)
1/2

.

Using these expressions in (3.6) we obtain for 0 < x1 <
h1,

� x1

0

ηp(η)

(x2
1 − η2)

1/2
dη =

1

2
f1(x1)− j

C0

(h2
1 − x2

1)
1/2

.

(3.10)
Since f1(0) = 0, for the consistency we must have C0 ≡

0. Thus Ψ1(z) = Ψ2(z) =
1
2π

� h1

−h1

l(η)
η−zdη. Now (3.10)

becomes
� x1

0

ηp(η)

(x2
1 − η2)

1/2
dη =

1

2
f1(x1), 0 < x1 < h1. (3.11)

By Abel inversion, (3.11) produces

p(η) =
1

2π

� η

0

f �
1(x1)

(η2 − x2
1)

1/2
dx1, 0 < η < h1. (3.12)

Since p(h1) = 0 and substituting x1 = 1/x, we get
� ∞

h

xf �(x)

(x2 − h2)
1/2

dx = 0. (3.13)

It may be noted that the expression for q(η) can be
obtained from (2.19) by Abel inversion.
A similar procedure is adopted to solve the coupled

Abel integral equations (2.20) and (2.21). This will
ultimately produce

� ∞

h

xF �(x)

(x2 − h2)
1/2

dx = 0. (3.14)

The equations (3.13), (3.14) together with (2.3) will
produce the four unknown constants α, β,R, T explic-
itly.

4. Reflection and Transmission coeffi-
cients

Substituting the appropriate expressions for f(x)
and F (x) in (3.13) and (3.14), carrying out the nec-
essary integrations, and substituting for α, β in terms
of R, T from (2.3), we ultimately obtain two equations
involving R and T . These give R and T as

(R, T ) =
1

2

�

iπK1(kh) + 4ie
−ikaU sin ka

iπK1(kh) + 4ieikaU sin ka

±
4ie−ikaV cos ka− πK1(kh)

4ieikaV cos ka+ πK1(kh)

�

(4.1)
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where (U, V ) =

π

2

� h

0

� ∞

0

sinh kt sin ξt cos ξy

sinh 2ξa

�

e2ξa ∓ 1
�

J1(ξh)dξdt

and K1(x) is the modified Bessel function, J1(x) is the
Bessel function. It is verified that R and T satisfies the
energy identity |R|2+ |T |2 = 1. Also α, β can be found
from equation (2.3) using these expressions for R and
T . Using (2.4) we obtain A(ξ), B(ξ), C(ξ) and D(ξ),
and then we can be obtain φ(x, y) explicitly.

5. Discussion

5.1 Approximation of R, T for small separation length:

As a → 0, U sin ka → U0, V → −π2

4 I1(kh) where

U0 = −
πk

2

� h

0

sinh kt

�
� ∞

0

sin ξtJ1(ξh)

ξ
dξ

�

dt.

Using these results in (4.1), we find as a → 0,

R → R0, T → T0,

where

R0 =
πI1(kh)

πI1(kh) + iK1(kh)
, T0 =

iK1(kh)

πI1(kh) + iK1(kh)
.

These results coincide with results of Ursell(1947).

5.2 Approximation of R, T for large separation length:

We introduce two dimensionless parameters λ = a/h
and µ = kh. For large separation length of the two

barriers i.e., as µ → ∞, we get, U, V ≈ −π2

2 I1(µ).
Using these,as µ → ∞, we find R ≈ e−2iλµ

+
2π sin 2λµK1(µ)I1(µ)−K2

1
(µ)e−2iλµ

{K1(µ)−2π sin λµeiλµI1(µ)}{K1(µ)−2πi cos λµeiλµI1(µ)}
and

T ≈
K2

1
(µ)

{K1(µ)−2π sin λµeiλµI1(µ)}{K1(µ)−2πi cos λµeiλµI1(µ)}
.

These results agree with LR and EM for large separa-
tion between the two barriers.

5.3 Numerical Results:

|R| obtained in (4.1) is depicted graphically against
kh for same values of a/h, used by EM. It observed that
all the figures almost coincide with the corresponding
curves given in EM.
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6. Conclusion

An alternative but simple method has been em-
ployed here to obtain the explicit solution of the prob-
lem of water wave scattering by two partially immersed
barriers. The method ultimately reduces to solving two
pairs of coupled Abel type integral equations. The re-
flection coefficients, |R| is depicted graphically for dif-
ferent values of a/h. The curves for |R| almost coincide
with the curves given by EM.
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