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Wave scattering by a circular ice floe of variable thickness
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Introduction

In this paper we consider the problem of water wave scattering by a circular ice floe of varying thickness and
a non-zero draught, over an undulating bed. The geometrical variations are assumed to be axi-symmetric.
Following Porter & Porter (2004), the problem is reformulated as a variational principle and a Rayleigh-Ritz
style approximation is generated through restriction of the vertical motion to a finite dimensional space.
This creates a process of vertical averaging, which eliminates the vertical coordinate from the governing
equations of the approximation. By selecting a suitably large dimension to represent the vertical motion,
approximations may be obtained to an arbitrary degree of accuracy. The azimuthal coordinate is also
removed from calculations by implementing a Fourier cosine expansion of the circular motion, which leaves
only a finite set of ordinary differential equations in the radial coordinate to be solved.

This work extends Bennetts et al (2007), in which numerical calculations are restricted to two-dimensional
geometrical constructions. The related problem of water wave scattering by a uniform circular ice floe of
zero draught has been solved previously over a finite fluid depth and a flat bed by Peter et al (2004) and
over an infinite fluid depth by Meylan & Squire (1995).

The boundary value problem

All horizontal dependence is defined in terms of the polar coordinates (r, §) that originate from the centre of
the floe and we denote the radius of the ice floe to be R. To define the vertical structure of the geometry we
use the cartesian coordinate z, which is directed upwards with its origin set to coincide with the equilibrium
position of the unloaded fluid surface. For r < R, the undisturbed lower surface of the ice is given by the
function z = —d(r) and the thickness of the ice by D = D(r). For r > R the fluid is unloaded (d = D = 0)
and extends to infinity in all horizontal directions. The fluid is bounded below by a fixed, impermeable bed
z = —h(r), which is permitted to undulate only beneath the ice cover.

Under the usual assumptions of linear wave theory and the imposition of harmonic time dependence
e ™! the reduced velocity potential ¢ = ¢(r, 6, z) must satisfy

Vp+¢,.,=0 (~h<z<—d), VhV¢+¢, =0 (2= —h), (1)

in which V = (1/7)(r cos 00, — sin 09y, r sin 00, + cos9y). The fluid motion induces the periodic trans-
verse oscillations n(r,6)e ™" in the ice floe from its equilibrium position. Assuming these oscillations to
be sufficiently small that linear theory applies and modelling the ice as a thin, elastic plate, we obtain the
conditions

VZ(,GV27]) + {1 - — %(1 - V)(Tﬁrarr + Tﬁrrar + ﬂrraQH)}n - d) = 07 V(]V(/) + (/)Z = K1) (Z = _d)7 (2)

which respectively represent the equation of motion of the plate and the kinematic condition at the water-ice
interface. The various quantities appearing in these equations are defined as k = w?/g, a(r) = kp;D(1)/pw
and (3(r) = ED*(r)/12p,g(1 — v?), where v is Poisson’s ratio for ice, p,g/3 is its flexural rigidity and E
is Young’s modulus; p; and p,, are respectively the densities of the ice and the fluid. Outside the circular
domain occupied by the ice, conditions (2) reduce to the regular free surface condition ¢, = k¢ (z = 0), and
the displacement function n(r, 0) = ¢(r, 0, 0), which simply represents the free surface elevation, is redundant.

Forcing is induced by a plane wave of amplitude 7, and the scattered wave is subject to the Sommerfeld
radiation condition. The full solution, ¢, in the free surface region (r > R) can therefore be shown to take
the form

S {1 o (B07) + BugHo(KOr) +2 57 1 (L I (KOr) + By Hon (K01)) cos(m0) } cosh {0 (2 + B}, (3)
n=0 m=1
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where J,,, and H,, (m = 0,...) are respectively Bessel functions and Hankel functions of the first kind. The
quantities kY (n=0,...) are the roots of the free surface dispersion relation

k© tanh kOh = &, (4)

arranged such that k((]o) is real and positive, which provides propagating waves. The roots k;o) (n=1,...) lie
on the imaginary axis and are ordered in increasing magnitude, representing increasingly rapidly decaying
evanescent waves. The amplitudes B, ,, (m,n = 0,...) are constants to be found as part of the solution
process and I,, = Idy,, is the Kronecker delta weighted by the incident amplitude.

To ease the numerical calculations, we assume that there is a positive value ¢ < R for which, within
the disc r < ¢, the ice is of constant thickness and the bed is flat. The solution within this region may be
expessed as

o(r,0,2) = Z{An,ojn,o(T) +2 Z 1" Ay Tnm (1) cos(m@) } cosh{k,(z + h)}, (5)

where Jp (1) = T (knt) + 0n1Jm(pa7) + 0p2Jm (p127) and the quantities k, (n = 0,...) are the roots of the
dispersion relation
(1 —a+ Bk")ktanh k(h — d) = &, (6)

ordered as with the roots of (4). The quantities p; (j = 1,2) are also roots of (6) but are (typically)
complex and g, ; (j = 1,2) are known weights. These values define waves that (typically) oscillate as well
as attenuate. The amplitudes A, ,,, (m,n =0, ...), like B, ,,, are unspecified constants. The corresponding
displacement function 7 may be easily obtained from (5) through (2).

Variational principle and approximation

Equations (1)-(2) and the free-surface condition ¢, = k¢ (r > R,z = 0) are the natural conditions of a
Hamiltonian formulation of the problem as the variational principle 6(£ + £ — T) = 0, in which

cw0 = 5 [ [ L] ey g w0 - a4 9 - 200l )

~268(1 = 1) {~(0)(0) + (@) ~ ~5(0x)” + 5(00)(0r0x) — 5 (x)*} Jrtr

cow) = 3 [T 1w ety o sio}raras,

and

) = [ (Wlen ~ Wlen)) t dzao

The interfacial functional Z ensures that the continuity of fluid pressure and fluid velocity arise as natural
conditions throughout the fluid depth (—h < z < —d) beneath the ice edge (r = R). Additionally, through
the variational principle we derive ice edge conditions that dictate no flow through the submerged portion
of the ice edge and vanishing of the bending moment and shearing stress. At the internal interface (r = ¢)
the stationary value must satisfy a set of essential and natural conditions related to the continuity of the
variables ¢ and y at that point, where the natural conditions are provided by the variational principle.

An approximation to the stationary point (¢,n) may be obtained by confining the dependence of the
function ¢ in the vertical coordinate, z, to a finite dimensional space and seeking the stationary point over



22" |WWWEFB, Plitvice, Croatia 2007

this restricted space. An approximation to the displacement function, x = 7, is then produced indirectly.
Motivated by (3) and (5) we employ the approximation ¢ & 1)y, where

N

(r,0,2) Z(pn r,)w,)(z) (r>R), U(rb, z)= Zapn(r, Ow,(r,z) (r<R). (7)

n=0

Outside the ice-covered region, the vertical modes w\’(z) = cosh{k{”(z + h)} are identical to those that
appear in (3). Beneath the ice w,(r, z) = cosh{k,(r)(z + h(r))} generalises the vertical modes that appear
in (5) to variable geometry so that, in the annulus of varying geometry (e < r < R), the functions k,(r)
(n = 0,...) satisfy the dispersion relation (6) generated by the particular vertical structure at each radial
value. In the disc of constant ice thickness and flat bed (r < €) wy(r, z) = wy(2), kn(r) =k, and h(r) = h
and the vertical modes coincide with those appearing in (5). It is therefore expected that ¢y will represent
modulated propagating waves and ¢, (n =1,...) the evanescent waves that are activated at the sources of
scattering.

By restricting the vertical motion to that defined in (7) the variational principle generates a 2N + 6
dimensional set of governing equations, independent of z, to be satisfied by the unknown functions ¢, and
<p1(10) (n = 0,...,N). The dimension of the approximation, N, may be increased to achieve an arbitrary
degree of accuracy. This is, in effect, an application of the Rayleigh-Ritz method.

Truncated versions of the Fourier cosine series expansions of the azimuthal dependence appearing in (3)
and (5) are utilized by the approximation. The dimension of these series, M, is chosen to achieve a desired
degree of accuracy. It can then be shown that

O (r,0) & I, Jo (k"7) + By o Ho(E® +22 L T (k1) + By Hy (K01} cos(mé), (8)

which is a direct truncation of the vertical motion of the full linear solution. It can be further shown that,
within the disc r < e,

M
Pu(r.0) & AnoTno(r) +2 Y i ApmTnin(r) co8(mb), Tnm(r) = Jin(knt) + > Sngdm(iyr),  (9)

m=1 j=1,2

where the values g, ; and fi; are dependent on the dimension of the vertical space and tend to g, ; and y;
respectively as N is increased. In the annulus of varying geometry we write

On(r,0) = ©uo(r —i—QZl ' On.m (1) cos(mb),  x(r,0) = xo(r —|—221 "X (1) cOs(m#),

and deduce that, for each m = 0,..., M, the unknown functions ¢, ,, and x,, must satisfy the system of
ordinary differential equations

N
Z{@T(Tan,,;ar<pi,m,)/r + byi0rQim + (Cni — (M)7) @0 3) i} + Klwn)s=—axm =0 (n=0,...,N),

V?n(ﬂv?fnn) + {1 - — (1 o V)((l/r)ar(/@rar) - (m/r)Qﬂrr)}Xm - va\,[:(] @n,m[wn]zzfd = 07

for e < r < R, where V2 = (1/r)0,(rd,) — (m/r)% The coefficients a,; = an;(r), bpi = by;(r) and
Cni = Cni(r) (i,n =0,...,N) are given by integrals through the fluid depth of the modes w,, (n =0,...,N)
and their derivatives.

We are therefore left with a set of (M + 1) ordinary differential equations in the radial coordinate, each
of dimension (2N + 6). These may be numerically solved. Combining the interfacial conditions generated by
the variational principle with expressions (8) and (9) provides the boundary conditions at the points r = ¢, R
for these ODEs.



22" |WWWEFB, Plitvice, Croatia 2007

0.7

ost (a)

0.5

[n]

cross-section

Numerical results

Numerical results are shown for two example problems in the above figure. In part (a) the effect of a quadratic
increase in the thickness of the ice from 10cm at its edge (r = R) to 1m at r = ¢ = R/2 is considered. The
uniform bed has h = 20m and the incident wavelength is chosen as A = 27 /k\”) = R/4. Two problems of
this form are shown. In one the thickness variation occurs on the lower surface of the ice (---) and in the
other is on the upper surface of the ice (x). This is compared to a uniform floe of thickness 85¢m (—), which
is chosen to give it an identical mass to the non-uniform floes. Results for a quadratic protrusion in the
bed from 20m at 7 = 50m to 10m at » = 25m, beneath the uniform floe, are also shown (o). We note that
the two floes of varying thickness provide almost identical profiles. Despite a significant increase in the bed
profile the displacements of the uniform floes are extremely similar. The relative differences between the sets
of results indicates that variations to the thickness of the ice dominate over bed variations.

Part (b) displays the effect of introducing a physically correct Archimedean draught to floes of 50m
radius and uniform thicknesses Dy = 1m, 2m and 4m over a flat bed, h = 20m. The maximum value of the
displacement of the floes, 9y = max ||, are given as functions of incident wavelength, A € (5,50)m, for
floes of a zero draught, d = 0, (solid line) and an Archimedean draught, d = p;D/p,,, (dot-dash). As the
floes become thicker, the displacement they experience decreases which is interpreted as a greater resistance
to the incident wave. We note that the curves are monotonically increasing functions of wavelength for the
longer incident waves. For shorter incident waves, this monotonicity is broken by the occurrence of local
maxima. These maxima are more prevalent for the floes that incorporate a non-zero draught and thinner
floes. At shorter wavelengths, there is a tendency for the floes of a non-zero draught to be displaced with a
smaller magnitude than the corresponding floes of a zero draught, a tendency that is disrupted only by the
occurrence of the maxima at short incident wavelengths. The point at which the floes of a non-zero draught
begin to experience a smaller displacement is relative to the thickness of the floe, so that, the thicker the
floe, the longer the incident wavelength that produces this behaviour. Further results will be presented at
the workshop.
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