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Abstract

A numerical method is presented for the
time-domain simulation of large amplitude mo-
tions of a 2-D surface piercing body with ar-
bitrary shape in deep water. Based on po-
tential theory, panels are distributed on the
body surface and desingularied sources are dis-
tributed above the calm water surface. The
body boundary condition is satisfied on the
exact submerged surface. The free surface
boundary conditions are linearized and satis-
fied on the calm water level. The solution
is stepped forward in time by integrating the
free surface kinematic and dynamic conditions.
The numerical solutions for the radiation prob-
lem are compared with experimental results
and other numerical results, and found to agree
well. The results for the impact problem are
compared with a similarity solution. The re-
sults for the diffraction problem are also pre-
sented.

1 Introduction

The accurate prediction of the wave-
induced motions is very important in ship and
offshore design. Severe motions and extreme
loads can lead to operability problems and in
extreme cases structural failure and capsize.
Traditionally, the problem is formulated using
potential flow theory and linearized by as-
suming the motions are small. Linear system
theory and random process theory are then
used to predict the extreme responses and
loads. There are many variations to this linear
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approach. Strip theory developed by Salvesen,
et al.[1] is probably the most popular for long
slender ships.

The other extreme is to solve the
Navier-Stokes equations using some type of
CFD technique. At the present time, the
required computational costs are too large
for practical use. Fully nonlinear potential
flow calculations greatly reduce the necessary
computation time, but they have problems
with numerical stabilities and wave breaking.

A compromise approach is to use a
blended method for nonlinear seakeeping cal-
culations. Blended methods are computation-
ally very fast and use a blend of linear and
nonlinear approaches. Typically, nonlinear
equation of motions, hydrostatic and Froude-
Krylov forces are used with linear predictions
of the radiation and diffraction forces. Strip
theory is often used to compute the radiation
and diffraction forces. To improve the valid-
ity of the blended method, we have developed
a body-exact technique. In this approach,
the two-dimensional boundary value problem
is solved using an exact body boundary condi-
tion and linearized free surface boundary con-
ditions satisfied on the calm water level. The
solution is time stepped using the known mo-
tion of the body and the linear free surface
conditions. As will be shown, the advantages
of the method are that it introduces the non-
linearities associated with the changing wetted
surface of the body, while retaining the compu-
tational efficiency of the linearized free surface
conditions.



2 Mathematical Formula-

tion

We consider a general two-dimensional
body floating on a free surface and undergo-
ing arbitrary three-degree-of-freedom motion.
An earth-fixed Cartesian coordinate system is
chosen with the y axis coincident with the qui-
escent free surface, and z is positive upward.
The fluid is assumed to be homogeneous, in-
compressible, inviscid and its motion is irrota-
tional. Surface tension is neglected and water
depth is infinite. The fluid motions can be de-
scribed by a velocity potential Φ(y, z, t). In the
fluid domain, Φ satisfies Laplace equation

∇2Φ = 0 (1)

On the mean free surface, the linearized
free surface boundary condition is imposed

ηt − Φz = 0 on z = 0 (2)

Φt + gη = 0 on z = 0 (3)

where z = η(y, t) is the free surface amplitude,
g is the acceleration due to gravity. On the
instantaneous body boundary, no normal flux
is permitted

∂Φ

∂n
= Vn on Sb (4)

where the unit normal vector into the body n
is positive out of the fluid. Vn is the instanta-
neous velocity in the normal direction includ-
ing rotational effects. In the far field, a radia-
tion boundary condition is imposed that there
are no incoming waves.

The initial conditions at t = 0 are

Φ = Φt = 0 in the fluid domain (5)

At each time step a mixed boundary
value problem must be solved; the potential
is given on the free surface and the normal
derivative of the potential is known on the
body surface. In terms of the desingularized
sources above the free surface and sources
distributed on the body surface, the potential
at any point in the fluid domain can be given

Φ(x) =
n∑

i=1

σ(ξi) ln |x− ξi|+
∫

Sw

σ(ξ)G(x; ξ)dl

(6)
where Sw represent the instantaneous wetted
body surface. |x− ξi| represents the distance
between any point in the fluid domain and the
desingularized source point. G(x; ξ) is a Rank-
ine source Green function

G(x; ξ) = ln r (7)

r = |x− ξ| (8)

where r is the distance between a source point
and a collocation point; ξ is the source point
on the body boundary. Applying the boundary
conditions, the descritized integral equations
can be solved to determine the unknown source
strength.

Once the source strength is found, Φ can
be evaluated by (6), and the velocity on the
body ∇Φ can been obtained. The total pres-
sure is given by Bernoulli’s equation

p = −ρ(
∂Φ

∂t
+

1

2
|∇Φ|2 + gz) (9)

The forces acting on the body can be ob-
tained by integrating (9) over the instanta-
neous submerged body surface, which can be
written as

F =
∫

Sw

pn dl (10)

3 Numerical Method

The integral equation (6) is discretized in
the usual manner. Desingularized sources are
distributed above the calm water level, and
constant strength flat panels are distributed
on the body surface. A 2nd-order Adams-
Bashforth scheme is used to time step the so-
lution. At each time step, the body surface is
repanelized.

4 Results

4.1 Linear Radiation Problem

Added mass and damping calculations for
heave, sway and roll of a circular cylinder and
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Figure 1: Vertical force acting in the circular
with a = 0.5R, ω2g/R = 1.0

box have been compared with Vugts’[2] exper-
imental and other numerical results. The dif-
ferences were less than 5% for all cases tested.

4.2 Body-Exact Problem

As an example, forced large amplitude
motion of a circular cylinder of radius R is
studied here. The cylinder is initially sub-
merged such that the center is at the calm
water line. The forced heave motion is z(t) =
−a sin ωt, a is the body motion amplitude. We
set ωR

g
= 1.0. The panel number is N = 40

on the body surface and T/dt = 100. As
addressed earlier, at each time step, the sub-
merged portion of the cylinder is repanelized,
and the influence matrix is reevaluated.

Fig.1 shows the different components of
the vertical force on the circular cylinder for
the case of a/R = 0.5. Steady state is rapidly
reached. For this case, the hydrostatic force is
the largest part of the total force. The iner-
tia term ∂Φ/∂t shows higher harmonic compo-
nents. The quadratic component (−|∇Φ|2/2)
is primarily a second-order harmonic.

4.3 Water Entry and Exit Prob-
lem

The impact problem of 30, 45, and 60 de-
gree wedges was investigated. The pressures
over the wedges were compared with the simi-
larity solution presented by Zhao et al.[3]. The
initial conditions were set such that wedges

had negligible initial draft and a constant
downward velocity of 10 meters-per-second.
The pressure measurements were taken once
the solution reached a relative steady state. At
the same time, by extrapolating the free sur-
face, the wave elevation at the intersection be-
tween the free surface and the body surface can
be determined. Once the wetted surface was
known, the pressure distribution on the body
can be stretched up to that point. Fig.2 and
Fig.3 show the pressure distribution and im-
pact force acting on the 45-degree wedge. The
values are compared with the similarity solu-
tion. The comparison shows that the impact
pressures and forces calculated by the present
method after stretching are much better that
the unstretched results. While the agreement
is not perfect, the results do show that this
computationally fast, simplified model gives
reasonable results. Fig.4 shows the force acting
on a 45-degree wedge undergoing large ampli-
tude sinusoidal motion. The body enters the
water at t = 0sec, and reaches the bottom of
the down stroke at t = 0.5sec. At t = 1sec the
body exits the water and remains out of the
water until it reenters at t = 2sec. The cycle
then repeats itself. As shown, for small times,
the impact force is consistent with the water
entry problem. The water exit problem shows
a significantly different force from the force in
the entry problem. This contrasts with linear
theory that says both the water entry and exit
force are same.

4.4 Diffraction Problem

Fig.5 shows the forces acting on the oscil-
lating cylinder at the same time it is impacted
by incident waves of amplitude A, and wave
length λ. Fy and Fz are the forces in the y
and z directions respectively. The motion am-
plitude of the circular cylinder is a = 0.5R.
The nondimensional wave number of the inci-
dent wave is KR = 0.6, and the amplitude of
of the incident wave is A = λ/20. The phase
angle between the oscillation of the cylinder
and the incident wave is 0o. The incident wave
frequency and body oscillating frequency are
same. As shown in Fig.5, the incident waves
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Figure 2: Pressure distribution over a 45-degree
wedge

Figure 3: Impact force acting on a 45-degree
wedge

Figure 4: Force acting on a 45-degree wedge
with large amplitude motion

cause a force in the y-direction(Fy), and a sig-
nificant mean shift in the vertical force(Fz).

5 Conclusions

Two-dimensional, large-amplitude body
motions are studied in this paper with a lin-
earized free surface and an exact body bound-
ary condition. Numerical results are obtained
for small-amplitude motion, large-amplitude
motion, water entry and exit, and wave diffrac-
tion. These results are compared with exper-
iments and other numerical solutions. Good
agreement is achieved for the large-amplitude
oscillation problem of circular cylinder. For the

Figure 5: Forces acting on oscillating circular
cylinder impacted by incident wave with a =
0.5R, KR = 0.6

wedge impact problem, the calculated values
are smaller than the similarity solution. This
method also works for the wave exciting prob-
lem. Investigation of the exciting forces are
continuing and will be shown at the workshop.
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Discusser - Y. Kim:

I remember that W.M Lin (1995) showed the similar works for large amplitude motion. Can you

describe the advantage of your method, compared with his?

Reply:

Lin and Yue (1990, 1995) used a time domain free surface Green function to solve the body-exact

problem. In our method, we use the desingularized sources distributed over the free surface. The

advantages of the desingularized sources are that we do not have to compute a complex free surface

Green function and also do not have to evaluate the resulting convolution integrals at each time

step. The disadvantage is that we have to worry about the far field radiation condition which is met

by the free surface Green function. In addition, we have a large influence matrix to invert. Both

the techniques have difficulties in dealing with the free surface-body intersection points that must be

properly accounted for.


