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A method for generating highly nonlinear periodic

waves in physical wave basins

Haiwen Zhang∗†, Hemming A. Schäffer†‡, and Harry B. Bingham∗

This abstract describes a new method for generating nonlinear waves of constant form
in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory
with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as
the target. We refer to the method as an ad-hoc unified wave generation theory, since there
is no rigorous analysis behind the idea which is simply justified by the improved results
obtained for the practical generation of steady nonlinear waves.

We seek a method to provide a time history of the piston wavemaker position X(t) as a
function of the depth-averaged horizontal fluid velocity under a wave U(x, t). For nonlinear
shallow water waves, the horizontal particle velocity is nearly uniform with depth and we
can directly relate the two quantities by

dXsw(t)

dt
= U(Xsw(t), t) (1)

as proposed by [3] who successfully used the technique to generate nonlinear waves with
Cnoidal wave theory providing U(x, t).

Linear potential theory can also be used to provide the wave paddle motion corre-
sponding to a given linear wave condition in the far field. Assuming a periodic solution at
frequency ω with far field surface elevation η(x, t) = ℜ{A(ω) exp (i(ωt − kx))}, the required
motion of a piston wavemaker is given by

X(t) = ℜ{Xa(ω) exp (iωt)} ⇒ ic0Xa(ω) = A(ω), c0 =
4 sinh2 kh

2kh + sinh 2kh
(2)

where the linear dispersion relation ω =
√

gk tanh kh relates the wave frequency to the
wavenumber, h is the water depth and g the gravitational acceleration. This can be put in
terms of the depth-averaged horizontal velocity at the paddle U(0, t) = ℜ{B(ω) exp (iωt)}
since B(ω) = ω

kh
A(ω) to get

iωXa(ω) = Λ B(ω), Λ =
kh

c0
= kh

2kh + sinh 2kh

4 sinh2 kh
. (3)

The basis for the ad hoc unified wave generation theory is the observation that in the
shallow water limit (kh → 0) Λ → 1 and we can thus split (3) into

iωXsw
a (ω) = B(ω), Xa(ω) = Λ Xsw

a (ω). (4)

By analogy with nonlinear shallow water wave generation theory, we combine the two ideas
to get an ad hoc unified generation procedure as follows. First, compute a shallow water
signal from

dXsw(t)

dt
+ ωcX

sw(t) = U(Xsw(t), t) (5)
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where a small term proportional to the wave paddle position has been added to act as a
high pass filter with characteristic frequency ωc. This is followed by a dispersion correction
step using

X(t) = F{Λ(ω)F−1{(Xsw(t)} } (6)

where F represents the Fourier transform which is evaluated in practise via a Fast Fourier
Transform with a suitable cut-off frequency corresponding to the maximum response fre-
quency of the wavemaker. Any theory, or even a numerical model, can be used to provide
the depth-averaged velocity but for highly nonlinear periodic waves, stream function theory
(see e.g. [1]) is a good choice. From continuity, we can write U(x, t) = c η(x,t)

h+η(x,t)
where the

phase speed c and the elevation η are obtained from the theory.
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Figure 1: Experimental test conditions shown together with some proposed theoretical and
experimental limits.

To test the new wave generation method, an experimental program was initiated at
DHI - Water & Environment. The test conditions in terms of relative wave height H/h
(nonlinearity) and relative wavelength L/h (dispersion) are shown in Figure 1 together
with several suggested limiting lines. The line labelled “Williams line” corresponds to the
theoretical limit for the steepest stable wave [6] (see also [2]). The line labelled “Hmax/h
by Massel” shows a collection of laboratory and field data sets by [5] as parametrised by
[4] which has been suggested as a practical breaking limit for wave generation using linear
theory. The line marked “Demarcation line” shows the proposed boundary between the
regions of validity of the Stokes and Cnoidal wave theories from [2].

Figure 2 shows results from the steepest and shallowest point on the experimental
program (H/h = 0.6, L/h = 11.8) and compares measured time series of surface elevation
at several positions along the wave flume. The upper plot shows the result of using shallow
water wave generation together with Cnoidal theory as the target. Clearly the generated
wave in this case is not of constant form. The lower plot shows the result using the new
unified generation theory together with stream function theory as the target and the wave
is clearly very close to regular. On both plots the theoretical result from stream function
theory is also shown.

Figure 3 shows an intermediate water depth case at L/h = 7.5 and H/h = .55 and
the new generation method is in this case compared to Stokes 2nd-order wave generation
theory, and again we can see that the new method leads to a substantial improvement in
uniformity along the length of the flume.

Finally, Figure 4 shows a case of simultaneous wave generation and active wave absorp-
tion using the shallow water conditions of Figure 2. This demonstrates that the method can
be used for simultaneous generation and active wave absorption, although this test in fact
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Figure 2: Steep shallow water wave generation with L/h = 11.8 H/h = 0.6.
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Figure 3: Steep intermediate depth case with L/h = 7.5 H/h = 0.55.
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Figure 4: Steep shallow water waves L/h = 11.8 H/h = 0.6, with active absorption.

had no reflected waves to absorb. More details and results from the experimental program
can be found in [8].

We note that this method was originally developed to provide an interface for a com-
bined numerical/physical model, and that work including many experimental tests for both
regular and irregular waves on uniform and variable bathymetries and in both two and
three dimensions is described in [7].
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