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Steady free-surface potential flow about a ship that advances, with constant speedU , in a large body of
calm water of effectively infinite depth is considered. An alternative linear model, called Neumann-Michel
model, to the classical Neumann-Kelvin model, is defined. The Neumann-Michel linear model accounts for
dominant nonlinear free-surface effects.

Generic potential-flow representations

Nondimensional coordinates, flow velocity, and velocity potential are defined in terms of a reference
lengthL , velocity U , and potentialUL . Hereafter,̃x = ( x̃ , ỹ , z̃ ) stands for a point inside a 3D flow
region, andx = (x, y , z) represents a point of the boundary surfaceΣ of the flow region. The flow-
field point x̃ and the boundary pointx are associated with a Green functionG(x̃ ;x) used to formulate
boundary-integral flow representations. The flow potential at a flow-field pointx̃ or a boundary pointx is
identified asφ̃ or φ , respectively. Furthermore,dA stands for the differential element of area at a pointx
of the boundary surfaceΣ , n is a unit vector that points inside the flow region and is normal toΣ atx , and
∇= (∂x , ∂y , ∂z ) .

The potential̃φ = φ(x̃) at a field point̃x within a 3D flow region bounded by a closed boundary surface
Σ is defined in terms of the boundary values of the potentialφ and its normal derivativen · ∇φ by the
classical Green boundary-integral representation

φ̃ =
∫

Σ

dA (G n ·∇φ− φ n ·∇G) (1)

The representation (1) defines the potentialφ̃ in terms of boundary distributions of sources (with strength
n ·∇φ ) and normal dipoles (strengthφ ), and involves a Green functionG and the first derivatives ofG .
The boundary-integral representation (1) holds for a field pointx̃ inside the flow region, strictly outsideΣ .
This restriction stems from the well-known property that the potential defined by the dipole distribution in
(1) is not continuous atΣ . Indeed,φ̃ on the left of (1) becomes̃φ/2 at a point̃x of the boundary surfaceΣ
(if Σ is smooth at̃x ). The boundary-surface integral on the right of (1) is null for a pointφ̃ located outside
the flow region bounded byΣ .

An alternative to Green’s classical potential representation (1), obtained inNoblesse and Yang (2004)
via an integration by parts of the dipole distribution in (1), is

φ̃ =
∫

Σ

dA [ G n ·∇φ + G · (n×∇φ) ] (2)

whereG stands for a vector Green function associated with the scalar Green functionG via the relation

∇×G = ∇G (3)

This relation implies thatG andG are comparable, i.e. that the behaviors ofG andG are comparable
in both the nearfield and the farfield. In particular,G is no more singular thanG in the nearfield. Thus,
the potential representation (2), which involves a Green functionG and a related vector Green function
G that is comparable to (in particular, is no more singular than)G as already noted, is weakly singular in
comparison to the classical representation (1), which involves∇G . The potential̃φ defined by the weakly-
singular representation (2) is continuous at the boundary surfaceΣ , whereas (1) does not define a potential
φ̃ that is continuous atΣ . The relation (3) does not define a unique vector Green functionG . Indeed, if
G satisfies (3),G +∇H also satisfies (3) for an arbitrary scalar functionH . Nevertheless, the potential
representation (2) defines a unique potentialφ̃ ; seeNoblesse and Yang (2004). The vector Green function

G = (G z
y ,−G z

x , 0) (4)

is used here. In (4), a subscript or superscript attached toG means differentiation or integration.

The potential representation



φ̃ =
∫

Σ

dA{G n ·∇φ + P G · (n×∇φ)− φ n · [ (1−P )∇G + G×∇P ]} (5)

whereP = P (x ; x̃) stands for a function ofx andx̃ , is a composite of the classical Green representation
(1) and the related weakly-singular representation (2), which correspond to the special casesP = 0 and
P =1 , respectively, and thus can be regarded as special cases of the more general family of potential repre-
sentations (5). For a weight functionP chosen so thatP→1 fast enough in the nearfield, the integrands of
the boundary-surface integrals in the potential representations (5) and (2) are asymptotically equivalent in
the nearfield, and the potentialφ̃ defined by these weakly-singular representations is continuous atΣ . Sim-
ilarly, the integrands of the boundary-surface integrals in the representations (5) and (1) are asymptotically
equivalent in the farfield ifP→ 0 sufficiently rapidly in the farfield.

Application to steady linear potential flow about a ship

The generic potential-flow representation (5) is now applied to steady flow about a ship that advances at
constant speedU in calm water. Thez axis is vertical and points upward, and the mean free surface is taken
as the planez = 0 . Thex axis is chosen along the path of the ship and points toward the ship bow. The
reference lengthL and velocityU used to nondimensionalize coordinates and the velocity potential may be
chosen as the ship length andU =

√
gL , whereg is the acceleration of gravity. An alternative reference

velocity isU = U . The closed boundary surfaceΣ in the boundary-integral representation (5) consists of

Σ = ΣB ∪ Σ0 ∪ Σ∞ (6)

whereΣB stands for the mean wetted hull-surface of the ship or (more generally) a control surface that
encloses the ship hull,Σ0 is the portion of the mean free-surface planez = 0 located outside the “body”
surfaceΣB , andΣ∞ is a farfield surface (e.g. the lower half of a sphere) that closes the flow domain. As
already noted, the unit vectorn = ( nx, ny, nz ) normal to the boundary surfaceΣ points into the flow
domain. Thus,n = (0 , 0 ,−1) at the free surfaceΣ0 .

The Green functionG is presumed to vanish sufficiently rapidly in the farfield to nullify the contribution
of the farfield boundary surfaceΣ∞ , which may be taken as a half sphere of radiusa , asa → ∞ . The
flow representation (5), with the boundary surface (6), then yields

φ̃ = φ̃B + φ̃0 (7)

whereφ̃B stands for the “body component” given by (5) withΣ taken as the ship-hull surfaceΣB , and the
“free-surface component”Σ0 is defined by (5) and (4) as

φ̃0 = −
∫

Σ0

dxdy [ Gφz− (1−P ) Gz φ−G z
x (P φ)x−G z

y (P φ)y ] (8)

The free surfaceΣ0 is unbounded in (8).

Let πφ andπG stand for the functions

πφ = φz +F 2φxx πG = G +F 2G z
xx (9a)

whereF = U/
√

gL is the Froude number. The integrand of the free-surface integral (8) can be expressed
asGπφ−A0 +F 2a0 whereA0 anda0 are defined as

A0 = (1−P )πG
z φ + (πG)z

x (P φ)x + (πG)z
y (P φ)y (9b)

a0 = [(1−P )Gx φ−Gφx ]x + [G zz
xy (P φ)y ]x− [G zz

xy (P φ)x ]y
Here, the relation∇2G zz = 0 was used.

Stokes’ theorem then shows that (8) can be expressed as

φ̃0 = −
∫

Σ0

dxdy (Gπφ−A0)−F 2

∫

Γ

dL [ ty (1−P )Gx φ + G zz
xy t ·∇(P φ)− tyGφx ]

Here,Γ stands for the intersection curve between the body surfaceΣB and the free surfaceΣ0 (in the special
case whenΣB is taken as the mean wetted ship-hull surface, rather than a control surface that encloses the
ship hull,Γ is the mean ship waterline),dL is the differential element of arc length ofΓ, andt = ( tx, ty, 0 )
is a unit vector tangent toΓ (oriented clockwise; looking down). Substitution of the foregoing expression
for φ̃0 into (7), with (5), then yields the boundary-integral representation



φ̃ =
∫

ΣB

dA{G n ·∇φ + P G · (n×∇φ)− φ n · [ (1−P )∇G + G×∇P ]}

−F 2

∫

Γ

dL [ ty (1−P )Gx φ + G zz
xy t ·∇(P φ)− ν tyGφx ] +

∫

Σ0

dxdy (A0−Gπφ) (10)

whereπφ andA0 are given by (9), andν = 1 . The factorν is introduced here for later use.

The velocity componentφx in the line integral aroundΓ in (10) may be expressed in terms of the
components of∇φ along the three orthogonal unit vectorsn , t andd = n× t as

φx = nx n ·∇φ + tx t ·∇φ− nz ty d ·∇φ = nx n ·∇φ + txφt− nz tyφd (11)

This expression definesφx in terms of the velocity componentn ·∇φ normal toΣB and the components
φt andφd along the unit vectorst andd tangent toΣB . If ΣB intersects the free surface orthogonally, one
hasnz = 0 atΓ and the third component on the right of (11) is null. Substitution of (11) into (10) yields

φ̃ = ψ̃ + χ̃ with (12a)

ψ̃ =
∫

ΣB

dAG n ·∇φ + νF 2

∫

Γ

dLGtynx n ·∇φ (12b)

χ̃ =
∫

ΣB

dA{P G · (n×∇φ)− φ n · [ (1−P )∇G + G×∇P ]}+
∫

Σ0

dxdy (A0−Gπφ)

−F 2

∫

Γ

dL [ ty (1−P )Gx φ + G zz
xy (P φ)t − ν txtyG φt + ν nz (ty)2Gφd ] (12c)

The potentialψ̃ is defined in terms of the velocity componentn ·∇φ normal toΣB , andχ̃ is defined in
terms of the potentialφ atΣB and the derivativesn×∇φ , φt andφd of φ along directions tangent toΣB .

The Neumann-Kelvin and Neumann-Michell linear models

The typical case of a surface-piercing ship, with the “body” surfaceΣB in the flow representation (12)
taken as the ship-hull surface (rather than a control surface that encloses the ship), is now considered. The
potential representation (10) can be expressed as

φ̃ = ψ̃B + χ̃ ′ with (13a)

ψ̃B =
∫

ΣB

dAGn ·∇φ =
∫

ΣB

dAGnx (13b)

χ̃ ′=
∫

ΣB

dA{P G · (n×∇φ)− φ n · [ (1−P )∇G + G×∇P ]}

−F 2

∫

Γ

dL [ ty (1−P )Gx φ + G zz
xy (P φ)t − ν tyGφx ] +

∫

Σ0

dxdy (A0−Gπφ) (13c)

In (13b), the ship-hull boundary condition was used.

The flow representation (13) follows from the generic potential-flow representation (5), applied to steady
flow about a ship with the flow region taken as the mean flow region, bounded by the mean free surface
and the mean wetted ship-hull surface. The generic potential-flow representation (5) can also be applied to
the true flow region, bounded by the deformed free surface and the actual wetted ship-hull surface. In this
nonlinear approach, integration over the ship-hull surfaceΣB in (13b) and (13c) must be performed up to
the free surface, approximately defined byz = F 2φx , instead of the mean free-surface planez = 0 . Thus,
expression (13b) approximately becomes

ψ̃B ≈
∫

ΣB

dAG nx +
∫

Γ

dL
∫ F 2φx

0

dz G nx

√
1− (nz)2

=
∫

ΣB

dAGnx−F 2

∫

Γ

dL tyG φx (14)

Here, the relationnx = −ty
√

1− (nz)2 was used. The line integral around the ship waterlineΓ in (14) and
the termν tyGφx (with ν = 1 ) in (13c) cancel out. The correction (14) for nonlinear free-surface effects
then yieldsν = 0 in (13c).



The potential̃χ ′ defined by (13c) yields additional corrections for nonlinear free-surface effects. How-
ever, these corrections areO (‖∇φ‖2) , whereas the correction (14) to the potentialψ̃ is O (‖∇φ‖) , i.e.
is in fact linear. This significant difference stems from the Neumann-Kelvin approximation, for whichnx

is not presumed to be small, and the related property (considered below) that the potentialψ̃B dominates
the potential̃χ ′ in (13a). Thus, a simple correction, which accounts for dominant nonlinear free-surface
effects, to the potential representations (13) or (12) is obtained by settingν = 0 in these representations.
The correction (14) provides a modification of the classical Neumann-Kelvin linear model, which corre-
sponds toν = 1 , of steady flow about a ship. The linear flow model associated withν = 0 in the potential
representation (12) is called Neumann-Michell model here.

Slender-ship approximations

It the boundary conditionn ·∇φ = nx at the ship hullΣB is used in (12b) and the potentialχ̃ defined
by (12c) – which involves the (a priori) unknown potentialφ and its tangential derivatives – is ignored,
expression (12a) yields the approximationφ̃ ≈ ψ̃ with

ψ̃ =
∫

ΣB

dAG nx + νF 2

∫

Γ

dLG ty(nx)2 (15)

This expression, withν = 1 , is the slender-ship approximation given inNoblesse (1983). If one setsν = 0
in (15), one obtains the potential̃ψB given by (13b). The slender-ship potential (15), withν = 1 or ν = 0 ,
has been found to provide useful practical approximations, notably for hull-form optimization; e.g.Percival
et al. (2001)andYang et al. (2002). The correction (14) for nonlinear free-surface effects and expression
(11) yield the approximation (15) withν = −1 . The approximations associated withν = 0 or ν = −1 in
(15) correspond to distributions of sources, with strengthnx, over the ship hull up to the mean free surface
z = 0 or the (linear approximation to the) free surfacez = F 2φx , i.e. over the mean wetted ship hull or the
“actual” wetted ship hull, respectively.

Numerical calculations reported inKoch and Noblesse (1979)and elsewhere show that the slender-ship
approximationν = 1 is in better agreement with experimental measurements than the approximationν = 0
at low Froude numbers, whereas the reverse may hold at high Froude numbers; the transition Froude number
is approximately equal to 0.31 and 0.32 for the two hull forms considered inKoch and Noblesse (1979).
This finding suggests that the usual Neumann-Kelvin model and the Neumann-Michell model might be
preferable at low or high speeds, respectively, although results based on the slender-ship approximation
(15) do not necessarily apply to the solution of the boundary-integral representation (12).

Concluding remarks

It can also be shown that, ifν = 1 , numerical cancellations occur between the surface integral over
ΣB and the line integral aroundΓ in (15); cancellations also occur within the integrand of the line integral
aroundΓ in (12c). These numerical cancellations do not occur forν = 0 .

This theoretical result, and the previously-noted significant numerical differences among the slender-
ship approximations that correspond toν = 1 andν = 0 , indicate that the usual Neumann-Kelvin linear
flow model and the related Neumann-Michell model are appreciably different. The relative merits of these
alternative linear flow models can only be established via comparison of experimental measurements and
numerical solutions of the boundary-integral representation (12) withν = 1 (Neumann-Kelvin model) and
ν = 0 (Neumann-Michell model).
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