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Steady free-surface potential flow about a ship that advances, with constanispeelarge body of
calm water of effectively infinite depth is considered. An alternative linear model, called Neumann-Michel
model, to the classical Neumann-Kelvin model, is defined. The Neumann-Michel linear model accounts for
dominant nonlinear free-surface effects.

Generic potential-flow representations

Nondimensional coordinates, flow velocity, and velocity potential are defined in terms of a reference
length L, velocity U, and potential/ .. Hereafterx = (,y,2) stands for a point inside a 3D flow
region, andx = (x,y,z) represents a point of the boundary surfacef the flow region. The flow-
field pointx and the boundary point are associated with a Green functi6tix ; x) used to formulate
boundary-integral flow representations. The flow potential at a flow-field poanta boundary poink is
identified aSg'E or ¢, respectively. Furthermord,A stands for the differential element of area at a paint
of the boundary surfacg, n is a unit vector that points inside the flow region and is normal &ix , and
V=(04,0y,0,).

The potential% = ¢(X) at afield point within a 3D flow region bounded by a closed boundary surface
Y is defined in terms of the boundary values of the potertiahd its normal derivativa - V¢ by the
classical Green boundary-integral representation
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The representation (1) defines the poteﬁeﬁh terms of boundary distributions of sources (with strength
n-V¢) and normal dipoles (strength), and involves a Green functiad and the first derivatives aff .

The boundary-integral representation (1) holds for a field poinside the flow region, strictly outside .

This restriction stems from the well-known property that the potential defined by the dipole distribution in
(1) is not continuous at . Indeed qb on the left of (1) become$/2 at a pointx of the boundary surface

(if X is smooth ak ). The boundary-surface integral on the right of (1) is null for a p¢|hicated outside

the flow region bounded b, .

An alternative to Green’s classical potential representation (1), obtainddhblesse and Yang (2004)
via an integration by parts of the dipole distribution in (1), is
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whereG stands for a vector Green function associated with the scalar Green fuGttiathe relation
Vx G =VG (©)

This relation implies thatG and G are comparable, i.e. that the behaviorstbfand G are comparable
in both the nearfield and the farfield. In particul&¥,is no more singular tha& in the nearfield. Thus,
the potential representation (2), which involves a Green funaicend a related vector Green function
G that is comparable to (in particular, is no more singular tf@s already noted, is weakly singular in
comparison to the classical representation (1), which invdl¥&'s The potentialy defined by the weakly-
singular representation (2) is continuous at the boundary surfagéhereas (1) does not define a potential
gthat is continuous at’. The relation (3) does not define a unique vector Green fun€iiorindeed, if

G satisfies (3)G + VH also satisfies (3) for an arbitrary scalar functiin Nevertheless, the potential
representation (2) defines a unique poterﬁiaﬂ;eeNoblesse and Yang (2004)he vector Green function

is used here. In (4), a subscript or superscript attachétrteeans differentiation or integration.

The potential representation
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whereP = P(x;x) stands for a function ot andx, is a composite of the classical Green representation

(1) and the related weakly-singular representation (2), which correspond to the speciaPcasesind

P =1, respectively, and thus can be regarded as special cases of the more general family of potential repre-
sentations (5). For a weight functidhchosen so thaP — 1 fast enough in the nearfield, the integrands of

the boundary-surface integrals in the potential representations (5) and (2) are asymptotically equivalent in

the nearfield, and the potentialdefined by these weakly-singular representations is continuduis &im-

ilarly, the integrands of the boundary-surface integrals in the representations (5) and (1) are asymptotically

equivalent in the farfield ifP — 0 sufficiently rapidly in the farfield.

Application to steady linear potential flow about a ship

The generic potential-flow representation (5) is now applied to steady flow about a ship that advances at
constant speetf in calm water. The axis is vertical and points upward, and the mean free surface is taken
as the plane = 0. Thex axis is chosen along the path of the ship and points toward the ship bow. The
reference lengtt and velocityU used to nondimensionalize coordinates and the velocity potential may be
chosen as the ship length abid= /gL, whereg is the acceleration of gravity. An alternative reference
velocity isU = U . The closed boundary surfa&ein the boundary-integral representation (5) consists of

Y =NpUNUS (6)

whereX g stands for the mean wetted hull-surface of the ship or (more generally) a control surface that
encloses the ship hulk is the portion of the mean free-surface plane 0 located outside the “body”
surfaceXp , andX, is a farfield surface (e.g. the lower half of a sphere) that closes the flow domain. As
already noted, the unit vectar = (n*,n¥,n*) normal to the boundary surfa¢e points into the flow
domain. Thusn = (0,0, —1) at the free surfacgy .

The Green functiols is presumed to vanish sufficiently rapidly in the farfield to nullify the contribution
of the farfield boundary surface., , which may be taken as a half sphere of radiysasa — oo. The
flow representation (5), with the boundary surface (6), then yields

¢ =5+ do (7)
WheregZ p stands for the “body component” given by (5) wihtaken as the ship-hull surfages , and the
“free-surface componen?’ is defined by (5) and (4) as
b0 = — | dwdy[Go:.— (1=P)G.6 = G;(P9)s— Gy (P9),] 8)
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The free surfac& is unbounded in (8).
Let 7¢ and=“ stand for the functions
7 = ¢, + Flhpn ¢ =G+ F*GZ, (9a)

whereF = U/+/gL is the Froude number. The integrand of the free-surface integral (8) can be expressed
asGn? — Ay + F%ag whereA, andag are defined as

Ao = (1=P) 7S ¢+ (n°); (P)s+ (7); (Po), (9b)
ap =[(1=P)Gr ¢ — G sl + [G (PO)yla =[Gy (PP)x]y
Here, the relatior'V2G #* = 0 was used.

Stokes’ theorem then shows that (8) can be expressed as
b0 = _/ drdy (Gm® — Ap) —F2/ dL[tY(1=P)Gy ¢+ G t-V(P¢) — tYG ¢, ]
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Here,I" stands for the intersection curve between the body suHacand the free surfacg, (in the special

case whertp is taken as the mean wetted ship-hull surface, rather than a control surface that encloses the
ship hull,T" is the mean ship waterlingj£ is the differential element of arc lengthBf andt = (¢*,¢¥,0)

is a unit vector tangent tb (oriented clockwise; looking down). Substitution of the foregoing expression

for 50 into (7), with (5), then yields the boundary-integral representation
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wherer? and A, are given by (9), and = 1. The factorv is introduced here for later use.

The velocity componend,, in the line integral around’ in (10) may be expressed in terms of the
components oV ¢ along the three orthogonal unit vectarst andd = n x t as

e =n"0-Vo+1t"t-Vo —n°t!d-Vo =n"n-Voé + "¢, — n°tYdq (11)

This expression defines, in terms of the velocity componenmt - V¢ normal toX g and the components
¢, andgy along the unit vectors andd tangent t& 5 . If X g intersects the free surface orthogonally, one
hasn® = 0 atI" and the third component on the right of (11) is null. Substitution of (11) into (10) yields

b=1v+y  with (12a)

Y= dAGn~V¢+uF2/d£thn”n-V¢ (12b)
T
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The potentiah[ is defined in terms of the velocity componant V¢ normal toX 5, andy is defined in
terms of the potentiab at > g and the derivativea x V¢, ¢, andg, of ¢ along directions tangent @0 .

The Neumann-Kelvin and Neumann-Michell linear models

The typical case of a surface-piercing ship, with the “body” surfegein the flow representation (12)
taken as the ship-hull surface (rather than a control surface that encloses the ship), is now considered. The
potential representation (10) can be expressed as

=105 +x  with (13a)
{}B:/ dAGn-V¢= | dAGn* (13b)
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In (13b), the ship-hull boundary condition was used.

The flow representation (13) follows from the generic potential-flow representation (5), applied to steady
flow about a ship with the flow region taken as the mean flow region, bounded by the mean free surface
and the mean wetted ship-hull surface. The generic potential-flow representation (5) can also be applied to
the true flow region, bounded by the deformed free surface and the actual wetted ship-hull surface. In this
nonlinear approach, integration over the ship-hull surfdgein (13b) and (13c) must be performed up to
the free surface, approximately definedy: F2¢,, instead of the mean free-surface plane 0. Thus,
expression (13b) approximately becomes
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Here, the relatiom® = —t¥,/1— (n*)? was used. The line integral around the ship watedlire (14) and
the termv tY G ¢, (with v = 1) in (13c) cancel out. The correction (14) for nonlinear free-surface effects
then yieldsy = 0 in (13c).



The potentialy’ defined by (13c) yields additional corrections for nonlinear free-surface effects. How-
ever, these corrections af&( || V¢|/2), whereas the correction (14) to the potentiais O (|| V¢||), i.e.
is in fact linear. This significant difference stems from the Neumann-Kelvin approximation, for which
is not presumed to be small, and the related property (considered below) that the pdigrdtahinates
the potentialy’ in (13a). Thus, a simple correction, which accounts for dominant nonlinear free-surface
effects, to the potential representations (13) or (12) is obtained by settin@ in these representations.
The correction (14) provides a modification of the classical Neumann-Kelvin linear model, which corre-
sponds tar = 1, of steady flow about a ship. The linear flow model associated mithO in the potential
representation (12) is called Neumann-Michell model here.

Slender-ship approximations

It the boundary conditiom - V¢ = n” at the ship hulblp is used in (12b) and the potentialdefined
by (12c) — which involves the (a priori) unknown potentiaknd its tangential derivatives — is ignored,
expression (12a) yields the approximatipr: ¢ with
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This expression, wittr = 1, is the slender-ship approximation giverNoblesse (1983)f one sets/ = 0

in (15), one obtains the potentialz given by (13b). The slender-ship potential (15), witk= 1 orv =0,

has been found to provide useful practical approximations, notably for hull-form optimizatioRpeciyal

et al. (2001)andYang et al. (2002) The correction (14) for nonlinear free-surface effects and expression
(112) yield the approximation (15) with = —1. The approximations associated with= 0 orv = —1in

(15) correspond to distributions of sources, with strengthover the ship hull up to the mean free surface

z = 0 or the (linear approximation to the) free surface: F2¢, , i.e. over the mean wetted ship hull or the
“actual” wetted ship hull, respectively.

Numerical calculations reported Koch and Noblesse (1978hd elsewhere show that the slender-ship
approximatiornv = 1 is in better agreement with experimental measurements than the approximation
at low Froude numbers, whereas the reverse may hold at high Froude numbers; the transition Froude number
is approximately equal to 0.31 and 0.32 for the two hull forms consideré&eam and Noblesse (1979)
This finding suggests that the usual Neumann-Kelvin model and the Neumann-Michell model might be
preferable at low or high speeds, respectively, although results based on the slender-ship approximation
(15) do not necessarily apply to the solution of the boundary-integral representation (12).

Concluding remarks

It can also be shown that, if = 1, numerical cancellations occur between the surface integral over
3 and the line integral around in (15); cancellations also occur within the integrand of the line integral
aroundI” in (12c). These numerical cancellations do not occurfer 0.

This theoretical result, and the previously-noted significant numerical differences among the slender-
ship approximations that correspondite= 1 andrv = 0, indicate that the usual Neumann-Kelvin linear
flow model and the related Neumann-Michell model are appreciably different. The relative merits of these
alternative linear flow models can only be established via comparison of experimental measurements and
numerical solutions of the boundary-integral representation (12)mithl (Neumann-Kelvin model) and
v = 0 (Neumann-Michell model).
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