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1 Introduction

A method is outlined for finding the scattering of ice-coupled flexural-gravity waves by a region
of variable thickness connecting two semi-infinite ice sheets of different thickness. With appropri-
ately chosen values for the two outer thicknesses, a linear increase in thickness from the thinner
sheet to the larger one, this can be used to model a sea ice/ice shelf transition such as the one
that occurs in the Ross Sea.

A full description of the solution method is given by Williams (2005), who also presents various
results that were obtained by using it. Chung & Fox (2002) solved a similar problem, that of an
abrupt jump in ice thickness, without a transition region, using the Wiener-Hopf technique. Their
Wiener-Hopf equations can also be derived by using Green’s theorem and taking the Fourier
transform of the resulting integral equation. This approach can be extended to allow for the
variable region, resulting in a similar Wiener-Hopf type integral equation, but one that is also
coupled with a second integral equation over the region of variable thickness. The latter is solved
numerically using the method of Williams & Squire (2004).

2 Equations and Boundary Conditions

Figure 1 illustrates the physical situation that we are modelling. A plane wave with unit ampli-
tude and radial frequency w arrives at a region of variable thickness from beneath the left-hand
ice sheet and is partial reflected by and partially transmitted through the variable region into the
water beneath the right-hand ice sheet. The amplitudes of the reflected and transmitted waves
are R and T respectively. R and T shall be called the reflection and transmission coefficients, and
their determination is the main purpose of our solution.

The ice in the left-hand region has thickness hg, the central region has variable thickness h;(x),
and the right-hand region has thickness hy. Subscripts of j = 0, 1 or 2 will be used to denote
quantities referring to the different areas in the same way that they are in the h;.

For the ice in each region, let us now define the flexural rigidity, D; = E;h3/12(1 — v3), and
the mass per unit area, m; = p;h;, where E;, v; and p; are the Young’s modulus, Poisson’s ratio
and density of the plate in the j™ region (respectively), while p is the water density and g is the
acceleration due to gravity. In the following we will assume that hy > hy(z) > hg, and we will
define the natural length that we will nondimensionalise with respect to as L = (Dy/pw?)'/5. We
will also assume that E; = E, p; = pice and v; = v, i.e., the main variation in ice properties is in

the thickness.

If we asume that the sea water beneath the ice is inviscid and of constant density, and that
the fluid flow is irrotational, then there exists a potential function ®(Z,7, z,t) such that the
velocity of a fluid particle is given by the gradient of ®. (Z,9,2) = L(z,y,2), where z,y and z
are nondimensional. Since the forcing from the incident wave is periodic in time, and since the
geometry of the problem is shift-invariant in the y direction, we assume that ® has the following
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Figure 1: The physical situation to be modelled. A plane flexural-gravity wave arrives from
beneath the sea ice and is partially reflected by and partially transmitted through the variable
region into the water beneath the ice shelf. The width of the variable regions is [, and the
thicknesses of the ice in the regions are denoted h; (j = 0,1,2). The ice is modelled using the
Euler-Bernoulli thin plate model. Submergence is neglected, so the bottom of each plate is taken
to be in the z = 0 plane. The left-hand edge of the variable region is located in the x = 0 plane
(the coordinate axes are displaced to the right to avoid clutter), the incident waves arrives at an
angle # from normal incidence, and the sea water has a finite depth of H.

form: .
el(ay y—wt)

T M

This reduces the dimension of the problem from four to two. The (nondimensional) wavenumber
o, will be related to the incoming wave’s angle of incidence.

(7,9, 2,t) = Re |@(z,2) ¥

The other two significant lengths, [ and H, are also nondimensional, having also been scaled
by L, so the dimensional ramp width and water depth are given by [ X L and H x L. Further
quantities that we will refer to are
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where ¢ is an infinitesimal quantity introduced to force the reflected and transmitted waves to
decay exponentially as they travel away from the central ice strip. The limit as it becomes zero
will be taken once the solution has been completed.

¢(z, z) must satisfy the following system of equations
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where
L(z,0;) = (02 — 2)D(2) (82 — ) + (1 — v)ai + A — m(z)p.

The function D(z) is defined as taking the value of D;(z) in the j*™ region, and m(z) is defined
analogously in terms of the m;(z).

As well as applying the above equations and the radiation conditions inherent in the problem,
the full solution must also satisfy some conditions at the two edges z. = 0 and x, = [. The



conditions that are most applicable in the modelled situation are as follows:

(bz(x:’ 0) = (252(336_, 0), (30‘)

$20(2l,0) = $a(z, . 0), (30)

M(CE:, a:v)(bz(x:’ 0) = M( Le s x)¢z(x;’ 0)’ (36)
S(x:: 6w)¢z($ja 0) = S(z.,0:)¢.(z, ,0), (3d)

where if £.(0;) = (02 — o)) F (1 —v)o;
M(z,0,) = D(z)L _(0;), S(x,0;) = D(x)L(0;)0; + D'(x)L_(0y).

These conditions effectively imply that energy is conserved at each edge (i.e. no translational or
rotational work is done by any of the edges).

3 Integral Equations

The first step in our Wiener-Hopf solution is to use Green’s theorem to derive an expression for
¢(z,z). This will lead us to a pair of coupled integral equations—one over the interval (0, ) which
generally needs to be solved numerically, and another over (/,0c) which is able to be solved ana-
lytically with the Wiener-Hopf technique.

We use a Green’s function, (G, that satisfies the following set of equations:

(8§+3§—a) (x—&2,0)=0(z—& 2z— (), (4a)
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where Lo(0;) = Do(07 — 2)* + X — mo.

This Green function depends on the dispersion function for the left-hand region, fo(«), where
fi(a) = coth(YH)/v=A;(7), Aj(7) = £4(ia) = Dyy*+A=myu (j = 0,2), and 7(a) = (o +05)'/.
In particular, the integral equations depend only on z or § derivatives of g(x —§) = G,c(z—¢,0,0),

which is given by
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where, for j = 0,2, S; = {a| fj(7y) =0 & Im(a)> 0} and

Aj(a) = —=(v*/a)/(H(AS(7)y* — 1) +5Dj7* + A — myp).

In the limit as € becomes zero (in the definition of \), S; generally contains a positive real root «;,
two complex roots and an infinity of positive imaginary roots. For § < 90°, oy = aptan6. The
effect of € is to produce a small anti-clockwise rotation of the roots—in particular, this moves the
«; into the upper half-plane.

Applying Green’s theorem, coupled with equations (2), (3) and (4), gives us the following
integral equation in ¢, (z,0):
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Equation (6) can now be written as a pair of coupled integral equations as follows:
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where ¢;(z) is ¢,(z,0) restricted to the j* region. The D;(x) term on the left-hand side of (7a)
results from a delta-function type singularity in the kernel of the integral equation; the Cauchy
principal value symbol 4 has been used to avoid having to integrate over this singularity at
¢ = x numerically. Equation (7a) may be solved with numerical quadrature using the method of
Williams & Squire (2004). Since £ is independent of z in the j = 2 region, (7b) may be solved
by taking a Fourier transform using the Wiener-Hopf technique.

The B coefficients are unknowns that provide the coupling between the two equations. If
b(e) = 1800, + ido(@)p" (=) Py, fi(a) =7?(a) £ (1 = v)ay, and p'(a) = ( —iafi(a), [-(a)),
they are given by
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Now, equation (7b) can be solved analytically, allowing the 3, coefficients to be written explicitly
in terms of the 5. Hence, the 3, may be eliminated from (7a), making the latter an integral
equation that depends on ¢;(x) alone, and that can be solved straightforwardly using numerical
quadrature.

The final step in the solution is the application of the edge conditions. From (6) and the
solution for ¢o(z), ¢,(z,0) may be written in the form

Tet®o? + %7 o a(a)e™™®  for z <0,
> acs, d(a)eiel=h for z > [.
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These expressions may easily be substituted into the definitions of the P, , giving a system of
four linear equations in four variables that must be solved to complete the solution.

4 Conclusions

This method represents a step forward in the treatment of ice scattering problems in that a nu-
merical solution method has been combined with the analytical Wiener-Hopf technique effectively.
However, the method does neglect submergence, which could make a difference when very thick
ice shelves are modelled and for smaller water depths especially. However, this approach should
be able to be generalised in the future to address this deficiency.
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Discusser - M.H. Meylan:

Do you believe that the Wiener-Hopf is better that mode-matching at high frequencies?

Reply:

Much the same in terms of number of modes use. Would be faster though, as no matrix to invert in
Wiener-Hopf (only a 2 x 2 matrix for edge conditions for a single edge).

Discusser - R. Porter:

Are there any limits on the thickness of the ice sheet given that you are using thin-plate theory?

Reply:

Should be ok, wavelength is extremely large in relation to wave amplitude (A > 100m for 2s period in
20m thick ice), and wave amplitude is small in relation to thickness. Also, Balmforth & Craster (2000)
and Fox & Squire (?) have more comparisons of thick plate equation versus thin plate equation and
there is little difference.



