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1 Introduction

My first water-wave problem was in oceanography, during World War II: How do ocean
waves propagate from a storm centre ? Without going into details for which see
[Barber & Ursell 1948], we found that the concept of group velocity, derived from the
mathematical treatment, gave us a decisive insight into the physical problem. Perhaps a
detailed study of mathematical solutions might yield valuable physical insights for many
problems.

Recently I have looked at my own past work in an effort to provide examples, see my
Newman paper [Ursell 2006] where several problems are re-examined. I have to report
that I have met with little success, The mathematics provides the solution but no physical
insight.

In the present note I shall as an illustration re-work one additional problem, which
I studied early in my career. It had been shown [Dean 1948] that a regular wavetrain
normally incident on a submerged circular cylinder is transmitted without reflection for
all values of the two independent parameters Ka and Kf > Ka occurring in the problem.
I gave an alternative treatment and went on to show [Ursell 1950] that the solution is
unique for each pair of values; it is this uniqueness problem which will be treated here .
The present treatment differs slightly from the earlier treatment.

2 The submerged circular cylinder heaving

with constant frequency, uniqueness

The x-axis is horizontal, y increases with depth, z = x + iy. The velocity potential is
φ(x, y)eiωt, where φ(x, y) satisfies the equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0 when y > 0 and |z − if | > a,

and also satisfies the boundary conditions
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= 0 on y = 0,
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→ 0 as y > 0 and |z| → ∞.



It will ultimately be shown that these conditions imply that φ(x, y) ≡ 0. We begin by
showing that any function φ(x, y) satisfying the preceding equation and boundary condi-
tions can be continued analytically as a regular harmonic function into the image region
(y < 0, |z + if | > a), including the point at ∞.

From the symmetry of the equations and boundary conditions we see that 1
2φ(x, y) +

1
2φ(−x, y), the even part of φ(x, y), is also a solution. We shall assume that φ(x, y) is
an even function of x. (The odd part can be treated in the same way.) We consider
the complex potential w(z) = φ(x, y) + iψ(x, y). Then we know that the real part of the
function

W (z) = Kw + i
dw

dz

vanishes on (−∞ < x <∞, y = 0), and it follows from the Riemann Symmetry Principle
that W (z) can be continued by reflection, W (x−iy) = −W (x+ iy), into the whole z-plane
outside the two circles |z ± if | = a. We can next determine w(z) in the upper domain by
solving the ordinary differential equation

Kw + i
dw

dz
= W (z)

along any contour starting in the lower domain. Any such contour may pass to the right
or to the left of the reflected circle |z + if | = a; we obtain a unique continuation for w by
introducing a vertical cut along (x = 0,−∞ < y < −f). The discontinuity δw across the
cut clearly satisfies(

K +
∂

∂y

)
δw = 0, so that δw = iBe−Ky across −∞ < y < −f,

where B is real . Let us next consider a submerged vertical wave dipole at z = if ,
its complex velocity potential V0(z) satisfies the free-surface condition, and the previous
argument shows that V0(z) can be continued into the same cut plane with a discontinuity
δV0 = iB1e

−Ky, where it is readily seen that B1 6= 0. It follows that the complex potential
w0(z) = w(z)−(B/B1)V0(z) is analytic outside the two circles |z±if | = a, and in particular
when |z| > f + a. Thus, outside the two circles, we have the convergent expression
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= f0(z) + F0(z).

In the expression
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every term is bounded for all large z. It follows that the last term is bounded and analytic
for large |z| and therefore for all |z|, and therefore equal to 0, therefore F0(z) = CeiKz for
all z, and

w(z) = (B/B1)V0(z) + CeiKz +
∞∑

m=1
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for large |z|. In particular, if w1(z) now denotes the uniqueness potential, there are from
energy considerations no waves at ∞ on the free surface, the first two terms on the right
must be absent, and so w1(z) is seen to be analytic at ∞. We now make the conformal
transformation

ζ =
z − iF

z + iF
where F = (f2 − a2)1/2,

then the free surface transforms into |ζ| = 1, and the submerged circle transforms into
|ζ| = s < 1. We have just seen that w may be continued as far as |ζ| = 1/s. Since ψ = 0
on |ζ| = s, we see that

w1 =
∞∑

n=0

pn

(
ζn +

s2n

ζn

)
,

with real coefficients pn, and that w1 may be continued by inversion as far as |ζ| = s2. Thus
the series for w1 converges when s2 < |ζ| < s−1, for our purpose an annulus s(1 − ε) <
|ζ| ≤ s−1(1− ε) is sufficient. It follows that

pn = O[sn(1− ε)−n] (2.1)

tends rapidly to 0 when n→∞. The boundary condition on the free surface states that

(1− ζ)2
dw

dζ
+KFw is pure imaginary on |ζ| = 1,

from which it follows that

qn+1 −
(

2− KF

n

)
qn + qn−1 = − 2KFs2n

n(1− s2n)
qn, (2.2)

where qn = npn(1− s2n), thus

qn = O[nsn(1− ε)−n]. (2.3)

To prove uniqueness we need to show that (2.2) and (2.3) imply that pn ≡ 0 for all n.
The difference equation (2.2) has two independent solutions. We arbitrarily choose a

second solution independent of {qn} and denote it by {Qn}. Then there are constants A
and ` such that

|Qn| < A`n for all n.

For suppose that this inequality is valid for n = N and n = N − 1, then it is valid for
n = N + 1, if

|QN+1| < (2 +KF +
2KFs2

1− s2
)A`N +A`N−1 < A`N+1,

and therefore if

(2 +KF +
2KFs2

1− s2
)`+ 1 < `2.

This is satisfied for all sufficiently large `, and for all n if A is chosen large enough. We
write

G(η) =
∑ Qn

n
ηn,



then G(η) has a positive radius of convergence at least equal to `−1. If `−1 < 1 we shall
next show that G(η) is convergent for all |η| < 1. For we see that

(1− η)2
d

dη
G(η) +KFG(η)

= −2KF
∑ s2n

n(1− s2n)
Qnη

n + P (η), a polynomial in η,

where we note that the last series converges in the larger circle |η| = `/s2. If `/s2 < 1 we
can now solve this differential equation for G(η) to obtain Qn in the larger circle, otherwise
we introduce a cut from η = 1 to η = ∞. In a finite number of steps we thus continue
G(η) analytically into a domain containing |η| < 1. It follows that

|Qn| < M(1 + ε)n, (2.4)

where ε is arbitrarily small. From the difference equation (2.2) we see at once that

Π(n) ≡ qn+1Qn − qnQn+1 = const. 6= 0,

since qn and Qn are independent solutions of the equation. We also see from (2.1) and
(2.4) that

Π(n) → 0 when n→∞.

This contradiction shows that we must have qn ≡ 0 for all n. Uniqueness has thus been
established for the even part of φ(x, y), the proof for the odd part is similar .

3 Conclusion

The first part of this proof depended essentially on analytic continuation into the upper
half space in which there is no fluid and no fluid motion. It is not easy to see how such
a procedure can be given a physical interpretation. I have had to use many non-physical
arguments in my mathematical work.
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