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Introduction

This paper is concerned with resonant effects caused by the scattering of a plane wave by a periodic
array of vertical circular cylinders. The scattered field isknown to consist of a finite set of plane
waves, and an infinite number of evanescent modes which decayexponentially as the perpendicular
distance between array and observer is increased. The problem is said to be resonant when the
direction of propagation of a scattered plane wave is exactly parallel to the array. An efficient
method for computing the solution in this special case is presented. No such method appears to
exist in the literature; other authors have derived only asymptotic results as the resonant state is
approached (see Twersky [1], for example).

Analysis

Consider a periodic array of vertical circular cylinders ofradiusa standing in a fluid of constant
depthh. The fluid extends to infinity in thex andy directions, and the cylinders extend throughout
its depth. The axis of cylinderp is located at(ps, 0), p ∈ Z in the(x, y) plane. Let the plane wave

φi = ℜ[eik(x cosψ0+y sinψ0)e−iωt] cosh[k(z + h)] (1)

be incident at angleψ0 upon the array. The depth and time dependence of all fields is identical to
(1); henceforth we omit the factorse−iωt andcosh[k(z + h)], and also the symbolℜ. We are left
with the two dimensional scattering problem shown in figure 1, in which all fieldsφ(x, y) satisfy
the Helmholtz equation

(∇2 + k2)φ = 0.

The total field is expressed in the form

φt = φi + φs,

whereφs is the scattered response from the array. Introducing shifted sets of polar co-ordinates
(rp, θp) with the origin positioned at the centre of scattererp, the boundary condition on the surface
of the scatterers requires that

dφt/drp = 0 (2)

on rp = a. Exploiting the fact that the only difference between the field at x = x0 and that at
x = x0 + ps is the phase factoreikps cosψ0 , we represent the scattered field in the form

φs =
∞

∑

p=−∞

∞
∑

n=−∞

eikps cosψ0Bn Hn(krp)e
inθp, (3)

whereHn is thenth order Hankel function of the first kind. An infinite system of equations for
the unknown constantsBn can be obtained by applying boundary conditions on the surface of the
scatterers using Graf’s addition theorem [2] as in Linton & McIver [3]. Thus, we have

Bm + Zm

∞
∑

n=−∞

Bnσn−m = −Zmime−imψ0 , m ∈ Z, (4)
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Figure 1: The infinite array, with scatterers centred at(ps, 0) for integerp, and with a plane wave
incident at angleψ0.

wherein

σn =

∞
∑

j=1

[e−ijks cosψ0 + (−1)neijks cosψ0 ] Hn(jks). (5)

For the Neumann condition (2), the coefficientsZn take the form

Zn = J′
n(ka)/H′

n(ka). (6)

As |n| → ∞, the sequence{Zn}, and therefore{Bn}, converges to zero exponentially [2]. The
quantityσn is known as a Schlömilch series, its value can be computed efficiently using expressions
given in [4].

Now, introduce a small damping factor by writingk = kr + iǫ, whereǫ > 0, kr ∈ R, and insert
the integral representation [5]

Hn(kr)e
inθ =

(−i)n+1

π

∫ ∞

−∞

[

α− γ(α)

k

]n sgn(y)

e−γ(α)|y|+iαx dα

γ(α)

into (3). Hereγ(α) = (α2 − k2)1/2, with γ(0) = −ik, and the damping factor moves the branch
points off the real line. Taking the limitǫ → 0 determines the direction in which the integration
contour should be indented in order to obtain the time-harmonic solution. The Poisson summation
formula then yields

φs =
∞

∑

j=−∞

A
±

j eik(x cosψj+|y| sinψj), (7)

where the scattering anglesψj are given by

k cosψj = k cosψ0 + 2jπ/s, (8)

and the amplitude coefficients by

A
±

j =
2

ks

∞
∑

n=−∞

(−i)nBne
±inψj cscψj . (9)

Here, the upper and lower signs refer toy > 0 andy < 0, respectively, and the expression (7)
is valid everywhere except ony = 0. A finite number of plane waves are included; note that
γ(k cosψj) = −ik sinψj , therefore terms for which| cosψj | > 1 represent evanescent modes,
which can be neglected for large|y|. Resonance occurs ifsinψp = 0 for somep ∈ Z since then
there is a plane wave propagating parallel to the array. In this case,A

±

p cannot be obtained directly
from (9), nor, in fact canBn be computed from (4) since the Schlömilch series (5) is now divergent.



Nevertheless, all physical quantities must remain finite, and can be determined as follows. We
restrict our attention to the case in whichψp = 0; ψp = π is equivalent toψ−p = 0 with the
incidence angleψ0 replaced byπ−ψ0. The case of double resonance, in whichψp = 0 andψq = π
with p, q ∈ Z, can occur whenks = (p − q)π, however this is not considered here. Results in [4]
show that

σn = σ̂n + 2(−i)n/(ksψp), (10)

whereσ̂n remains bounded asψp → 0. Thus, the crucial step is to consider the Schlömilch seriesσn
and the coefficientBn as functions of the scattering angle ψp. The situation can then be explained in
the following manner. The Schlömilch seriesσn(ψp) has a simple pole at the pointψp = 0, however
the total residue obtained from the summation in (4) must be zero in order to yield a finite right hand
side. Hence we can introduce the Taylor expansion

2

ks

∞
∑

n=−∞

(−i)nBn(ψp) = a1ψp +O(ψ2
p), (11)

then on using (10) in (4) and evaluating atψp = 0, we obtain

Bm(0) + Zm

∞
∑

n=−∞

Bn(0)σ̂n−m(0) = −Zmim[e−imψ0 + a1]. (12)

The presence of the extra unknowna1 necessitates the use of an additional equation to close the
system; this is obtained by evaluating (11) atψp = 0. Expandingein sgn(y)ψp in powers ofψp, and
using (11) in (9), we can now take the limitψp → 0 to obtain

A
±

p = a1 ±
2i

ks

∞
∑

n=−∞

n(−i)nBn(0). (13)

In the casep = 0 (grazing incidence), the entire system can be solved by inspection; we find that
Bn(0) = 0 anda1 = −1. Thus in the limitψ0 → 0, the scattered response eliminates the incident
wave, i.e. the array behaves as a simple Dirichlet boundary located ony = 0.

Results & Discussion

The system of equations (4) and its resonant counterpart (12) can be solved numerically by trunca-
tion. Figure 2 shows two mode amplitudes for the total field above and below the array forks = 2.5,
ka = 0.5 with varyingψ0. The quantities1 + A

+

0 andA
−

0 are the transmission and reflection coef-
ficients for the array; note the symmetry aboutψ0 = π

2
for these plots. Equation (4) was used for

the continuous curves. Sharp changes in gradient occur close to resonances; there are six in this
case, one for each of the modesj = ±(1, 2, 3). Thus the amplitude of each mode is affected by
resonances in each other mode. The locations of the cross symbols(×) were determined by solving
(12), withp = 1. These indicate the correct value forA

±

1 when this mode is resonant. Note the rapid
decrease in both|A

+

1 | and |A
−

1 | as mode1 changes from an evanescent wave (to the left of the×
symbols) to a plane wave (to the right). Also note that, at itsresonance, mode1 dominates above the
array, since all higher modes are evanescent. Despite the use of one thousand data points for each
plot, the curve for|A

+

1 | fails to capture the correct behaviour at resonance. Testing the behaviour of
the solution on the surface of the scatterers using the boundary condition indicates that the resonant
calculation using (12) is correct; it is difficult to accurately compute the amplitude by settingψ0

close to the critical angle.
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Figure 2: Mode amplitudes forks = 2.5, ka = 0.5. The cross symbols(×) indicate the location of
the resonance for mode1.
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