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I ntroduction

This paper is concerned with resonant effects caused by #tesng of a plane wave by a periodic
array of vertical circular cylinders. The scattered fieldkim®wn to consist of a finite set of plane
waves, and an infinite number of evanescent modes which dxgmnentially as the perpendicular
distance between array and observer is increased. Theepnablsaid to be resonant when the
direction of propagation of a scattered plane wave is exaudtallel to the array. An efficient
method for computing the solution in this special case isgméed. No such method appears to
exist in the literature; other authors have derived onlyng#ptic results as the resonant state is
approached (see Twersky [1], for example).

Analysis

Consider a periodic array of vertical circular cylindersrafliusa standing in a fluid of constant
depthh. The fluid extends to infinity in the andy directions, and the cylinders extend throughout
its depth. The axis of cylinderis located atps, 0), p € Z in the(x, y) plane. Let the plane wave

¢i — é}fe[eik(mcoswoersinwo)efiwt] COSh[/{?(Z + h)] (1)

be incident at angle, upon the array. The depth and time dependence of all fieldkeigical to
(1); henceforth we omit the factors™* andcosh([k(z + h)], and also the symbdt. We are left
with the two dimensional scattering problem shown in figurénlwhich all fields¢(z, y) satisfy
the Helmholtz equation

(V2 + ko =0.
The total field is expressed in the form

¢ =¢' + ¢,

where ¢® is the scattered response from the array. Introducingeshgets of polar co-ordinates
(rp, 8,) with the origin positioned at the centre of scatterethe boundary condition on the surface

of the scatterers requires that
de'/dr, =0 (2)

onr, = a. Exploiting the fact that the only difference between thédfiet + = z, and that at
r = x0 + ps is the phase factar*rs<>s¥o we represent the scattered field in the form

gbs _ Z Z eikps cos g Bn Hn(k:rp)einep’ (3)

P=—00 N=—00

whereH,, is thenth order Hankel function of the first kind. An infinite systerhemjuations for
the unknown constant8,, can be obtained by applying boundary conditions on the serfd the
scatterers using Graf’s addition theorem [2] as in Linton &I%r [3]. Thus, we have

B+ Zm Z Bnop—m = _Zmime_imwoa m € Z, (4)

n=—oo



Figure 1: The infinite array, with scatterers centredyat 0) for integerp, and with a plane wave
incident at angle),.

wherein

o, = Z[e—ijkscoswo + (_l)neijkscoswo] Hn(]ks) (5)

j=1
For the Neumann condition (2), the coefficieatstake the form

Zn = J,(ka)/ Hj, (ka). (6)

As |n| — oo, the sequencéZ, }, and thereforg B, }, converges to zero exponentially [2]. The
guantityo,, is known as a Schlomilch series, its value can be computmibettly using expressions
givenin [4].

Now, introduce a small damping factor by writikg= &, + ic, wheree > 0, k, € R, and insert
the integral representation [5]
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[e.e]

into (3). Herey(a) = (a? — k?)'/2, with 4(0) = —ik, and the damping factor moves the branch
points off the real line. Taking the limié — 0 determines the direction in which the integration
contour should be indented in order to obtain the time-harmsolution. The Poisson summation
formula then yields

(Z)S: Z AAj:eik:(:z:cos1,leJr|y\sin1/1j)7 (7)

j=—o00

where the scattering anglés are given by
kcost; = kcos )y + 2jm/s, (8)

and the amplitude coefficients by

[e.9]

Z (—1)" B,,e™"¥ csc ;. (9)

n=—oo
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Here, the upper and lower signs referito> 0 andy < 0, respectively, and the expression (7)
is valid everywhere except om = 0. A finite number of plane waves are included; note that
v(kcost;) = —iksine;, therefore terms for whichcos ;| > 1 represent evanescent modes,
which can be neglected for largg|. Resonance occurssdfn ¢, = 0 for somep € Z since then
there is a plane wave propagating parallel to the array.ikmseAj cannot be obtained directly
from (9), nor, in fact carB,, be computed from (4) since the Schlomilch series (5) is nieerdent.



Nevertheless, all physical quantities must remain finiteJ ean be determined as follows. We
restrict our attention to the case in whigh = 0; ¢, = = is equivalent toyy_, = 0 with the
incidence angle), replaced byr — ,. The case of double resonance, in which= 0 andy, = 7
with p, ¢ € Z, can occur wherks = (p — q)m, however this is not considered here. Results in [4]
show that

O = b+ 2(—1)"/ (kstsy), (10)

whereg,, remains bounded ag, — 0. Thus, the crucial step is to consider the Schlomilch serje
and the coefficient,, asfunctions of the scattering angle ¢, The situation can then be explained in
the following manner. The Schlomilch series(v,) has a simple pole at the poinf = 0, however
the total residue obtained from the summation in (4) musee in order to yield a finite right hand
side. Hence we can introduce the Taylor expansion

e}

= Z (=1)"Bu(¢p) = a1ty + O(wi), (11)

n=—oo

then on using (10) in (4) and evaluatingygt= 0, we obtain

Bo(0) + Zun Y Bu(0)60-m(0) = —Zpi" e + ay]. (12)

n=—oo

The presence of the extra unknown necessitates the use of an additional equation to close the
system; this is obtained by evaluating (11)/gt= 0. Expandinge"s&"®¥» in powers ofi,, and
using (11) in (9), we can now take the limif — 0 to obtain

e e}

" 2i n
Ay =ar ko > n(=1)"B,(0). (13)

n=—oo

In the case» = 0 (grazing incidence), the entire system can be solved byertgm; we find that
B,(0) = 0 anda; = —1. Thus in the limity, — 0, the scattered response eliminates the incident
wave, i.e. the array behaves as a simple Dirichlet boundaatéd ony = 0.

Results & Discussion

The system of equations (4) and its resonant counterpartéibe solved numerically by trunca-
tion. Figure 2 shows two mode amplitudes for the total fielovaand below the array férs = 2.5,

ka = 0.5 with varyingv,. The quantitied + Ag and A, are the transmission and reflection coef-
ficients for the array; note the symmetry abgyt= 7 for these plots. Equation (4) was used for
the continuous curves. Sharp changes in gradient occue tbosesonances; there are six in this
case, one for each of the modgs= +(1,2,3). Thus the amplitude of each mode is affected by
resonances in each other mode. The locations of the crodsdy(x ) were determined by solving
(12), withp = 1. These indicate the correct value t@f when this mode is resonant. Note the rapid
decrease in both4; | and|A; | as model changes from an evanescent wave (to the left ofsthe
symbols) to a plane wave (to the right). Also note that, ags®nance, modedominates above the
array, since all higher modes are evanescent. Despite éhefumse thousand data points for each
plot, the curve foif A | fails to capture the correct behaviour at resonance. Te#tmbehaviour of
the solution on the surface of the scatterers using the myymbndition indicates that the resonant
calculation using (12) is correct; it is difficult to accueBt compute the amplitude by setting
close to the critical angle.
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Figure 2: Mode amplitudes fdrs = 2.5, ka = 0.5. The cross symbolex) indicate the location of
the resonance for mode
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