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With very best wishes to my good friend David
Evans, on the occasion of his retirement. Pro-
fessor Evans is an authority in linear water-wave
theory, a field that he has very successfully ex-
plored and contributed to. -R. W. Yeung

1 Introduction
When a moonpool is present between two bodies,
its resonant motion introduces complex behavior
of the water column and accordingly alters the
hydrodynamic behavior of the surrounding bod-
ies. Commonly studied resonances include the
Helmholtz, or “pumping mode”, and other sym-
metric resonances. Antisymmetric modes, re-
ferred to as sloshing, are well known in its ef-
fects on motion of floating bodies. The latter
have been addressed in several recent papers in
the Workshop. One of the first studies of sym-
metric resonances was performed by Wang and
Wahab (1971) who investigated the resonances
of a moonpool between two semicircular floating
bodies and noted the vanishingly small damping
near the “zero-th” resonance mode. Miloh (1983)
studied the wave load on a circular solar pond and
noted similar behavior. Helmholtz modes also
occur in closely related problems such as har-
bor resonance (Miles & Lee, 1974). More re-
cently, Mavrakos (2004) studied the heave hydro-
dynamic coefficients for concentric cylinders of
finite drafts.

McIver (1996) derived the streamlines of a
twin body which does not radiate waves at in-
finity for a characteristic frequency. In essence,
waves generated by the body only persist in the
moonpool and local area near the bodies. This

created much interest in the so-called “trapped
mode” resonance. Newman (1999) investigated
the torodial form of the McIver streamline and
Shipway and Evans (2003) studied the wave trap-
ping behavior of concentric cylinders. Yeung and
Seah (2004) investigated the effect of viscosity
on the McIver streamlines. It was found that the
time-domain solution of these shapes did not ex-
cite the oscillations at these trapped frequencies.
In a number of common shapes like circular and
rectangular cylinders, the Helmholtz mode of res-
onance reveals itself readily. This mode can be
characterized by the absence of radiating waves
but an appreciable amount of moonpool motion
that is bounded.

In order to provide a better quantitative un-
derstanding of these Helmholtz modes and their
modal shapes, the present study is directed to
obtaining a semi-analytical solution of heaving
twin rectangular cylinders. These results can
also be obtained by an integral-equation formu-
lation (say, Yeung, 1982) and other means, but
the present analytical procedure is very accurate,
and convergence of the solution is not an issue as
the frequency approachs the Helmholtz and other
resonance frequencies.
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Figure 1: Schematic of the Fluid Domain.



2 Methodology
2.1 Division of solution domain
The approach used in this study is similar to that
developed by Yeung (1981) and Fotsch (1997).
Whereas the domains in these previous studies
were subdivided into two subregions, the geom-
etry here requires a subdivision effectively into
three regions.

Figure 1 shows these regions as the inner
moonpool water-column, exterior fluid domain
and the fluid domain under the body. The dis-
tance from the axis of symmetry to the centerline
of the bodies is denoted as w and each rectangular
body has a half-beam of b and a draft of d. Water
depth, h, is considered to be deep when h/d is
greater than 20, for most wave-lengths. The fluid
is taken to be inviscid and incompressible, with
the amplitude of heave motion being small. Thus
the velocity potential can be represented as:

Φ(x, y, t) = Re[−iσζ2φ(x, y)e−iσt] (1)

where σ is the frequency of heave oscillation, ζ2

is the heave amplitude. The spatial unit potential,
φ, takes a different functional form in each of the
three subdomains and are denoted by φe1, φe2 and
φi for the moonpool, exterior and underbody re-
gions, respectively. Each of these potentials are
subject to a distinctive set of boundary conditions
so the final form of φ should be obtained by the
matching of the potentials at the matching bound-
aries, (x = w ± b, cf. Yeung, 1981). In the re-
gion under the body, the inhomogeneous bound-
ary condition,

∂φi

∂y
= 1, at y = −d, (2)

is used to ‘drive’ the problem, resulting in the
sum of a homogeneous (φih) and a particular (φip)
solution. φih is an infinite set of eigenfunctions
with eigenvalues satisfying

γn =
nπ

h − d
, n = 0, 1, . . . (3)

giving the form of φi as:

φi = φip + φih. (4)

It is easy to establish that

φip =
1

2(h − d)

[

(y + h)2 − (x − w)2
]

(5)

and

φih =
∞
∑

n=0

(C1nX1n + C2nX2n)Y i
n (6)

X1n =

{

1 for n = 0
cosh γn(x−w)

cosh γnb
for n ≥ 1

(7)

X2n =

{

x − w/b for n = 0
sinh γn(x−w)

sinh γnb
for n ≥ 1

(8)

Y i
n =

{

1 for n = 0

cos γn(y + h)/
√

1
2

for n ≥ 1.
. (9)

C1n and C2n are unknown coefficients to be de-
termined from information in the other regions.
Note that Y i

n is a set of orthonormal functions
such that the inner product can be defined as fol-
lows for any integer pair l and m:

< Y i
l , Y i

m >≡ 1

h − d

∫

−d

−h
Y i

l Y i
mdy = δlm (10)

In a similar fashion, the linearized free-surface
and bottom conditions for the remaining two re-
gions result in another series of eigenfunctions
with eigenvalues satisfying

m0 tanh m0h = ν (11)
mk tan mkh = −ν, k = 1, . . . (12)

where ν = σ2/g, the frequency parameter.
Hence, φe1 and φe2 can be written in the form

φq =
∞
∑

k=0

Bq
kΛ

q
k(x)Y e

k (y) (13)

where q = e1, e2 and Λq
k, Y e

k are defined as

Λe1
k =

{ cos m0x
cos m0(w−b)

cosh mkx
cosh mk(w−b)

for k = 0
for k ≥ 1

Λe2
k =

{

eim0(x−(w+b))

e−mk(x−(w+b))

for k = 0
for k ≥ 1

(14)

and

Y e
k =

{

cosh m0(y + h)/N
1/2
0 for k = 0

cos mk(y + h)/N
1/2
k for k ≥ 1

(15)
It should be noted that the expressions for Λe1

k ex-
ploits the symmetry property about the y-axis. Bq

k

are another two new sets of unknown coefficients.
The Nk are scale factors to achieve Eqn. (10) and
are given by

Nk =







1
2

[

1 + sinh 2moh
2moh

]

for k = 0
1
2

[

1 + sin 2mkh
2mkh

]

for k ≥ 1
(16)
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Figure 2: Heave added-mass (µ22) and damping (λ22), and matrix determinant (w/b=5.0).

2.2 Matching of solutions
To determine the values of C1n, C2n and Bq

k, it is
required that the potentials and fluxes be matched
at x = w±b. These four matching conditions can
be used so as to eliminate Bq

k from the equations,
enabling φ be entirely expressed in terms of C1n

and C2n. Thus, a linear system of equations can
be obtained,
C1n − C2n−

1
h(h−d)

∑

∞

k=0

∑

∞

j=0
Λe1

k

Λe1
k

′ SknSkj [C1jX1j
′ + C2jX2j

′]

= 1
h−d

∑

∞

k=0
Λe1

k

Λk
′ SknBe1

k
∗− < φip, Y i

n >|x=w−b

(17)
C1n + C2n−

1
h(h−d)

∑

∞

k=0

∑

∞

j=0
Λe2

k

Λe2
k

′ SknSkj [C1jX1j
′ + C2jX2j

′]

= 1
h−d

∑

∞

k=0
Λe2

k

Λe2
k

′ SknB
e2
k

∗− < φip, Y i
n >|x=w+b

(18)
where

Skn =







































sinhm0(h−d)

moN
1/2

o

for k = 0, n = 0
sinmk(h−d)

mkN
1/2

k

for k ≥ 1, n = 0

m0(−1)n sinh mo(h−d)√
1

2
No(m2

o+γ2
n)

for k = 0, n ≥ 1

mk(−1)n sinmk(h−d)√
1

2
Nk(m2

k
−γ2

n)
for k ≥ 1, n ≥ 1

(19)
and

Bq
k
∗ =

1

h

∫

−d

−h
φip

x Y e
k dy. (20)

Terms on the RHS of Eqns. (17) and (18) are
known and the ∗ is used to denote terms associ-
ated with the particular solution.

3 Illustrative Results and Discussions
The results presented here refer to a set of rectan-
gular bodies with d/b = 1 and w/b = 5. A depth-
to-draft ratio, h/d, of 20 is taken to approximate
deep water conditions. Figure 2 shows the heave
hydrodynamic coefficients, non-dimensionalized
by ρb2, and the determinant of the matrix formed
by Eqns. (17) and (18). The frequency range

shown encompasses the Helmholtz frequency at
(νb)o = 0.263 and the first symmetric resonance
at (νb)1 = 0.829 as indicated by zero damping
properties at these points. The indices of νb are
assigned to the type of modes defined above.

With respect to these coefficients, it is interest-
ing to note that the location of minimum (nega-
tive) added mass occurs before (νb)o. In fact, it
even preceeds the location where the real compo-
nent of the determinant vanishes. In contrast, at
(νb)1, both added mass and damping show sin-
gular behaviour preceeding (νb)1. In terms of
the determinant, the two characteristic frequen-
cies show differing behaviour as well. While a
non-zero minimum in its absolute value is seen
around (νb)o, it clearly attains a zero absolute
value for (νb)1. Note that for the Helmholtz
mode, though the coefficients vary rapidly around
the Helmholtz frequency, they remain bounded.

Figure 3 are plots of the wave elevation in the
moonpool region that are in-phase and out-of-
phase with the body motion around (νb)o. The
in-phase component has a partial sinusoidal form
with a negative mean value leading to the ’pump-
ing or piston’ nature of the resonance. How-
ever, while the form may be flattest at the fre-
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Figure 3: In- and Out-of-phase wave elevation around
Helmholtz resonance.
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Figure 4: Variation of heave added mass with separa-
tion and frequency.
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Figure 5: Variation of heave damping with separation
and frequency.

quency of minimum added mass, the mean value
appears to be most negative where the real com-
ponent of the determinant crosses the zero value
at νb = 0.232. Similarly, the out-of-phase com-
ponent appears to have a partial sinusoidal form
with a positive mean value, which decreases to
be uniformly zero across the moonpool at (νb)o.
Beyond (νb)o, it once again recovers its slightly
sinusoidal form but with a negative mean value.

The effects of varying separation, w/b, can be
seen in Figures 4 and 5 which are contour plots
of the added mass and damping coefficients re-
spectively. The lines clearly visible on these plots
represent the loci of the resonances, with the bot-
tom line being the loci of the Helmholtz frequen-
cies (νb)o and the rest being the higher frequency
symmetric resonances.

An interesting feature is that (νb)o approaches
a finite value as the moonpool becomes infinitely
small which is in constrast to the rest of the dark

lines as they approaches infinity. Also, the clearly
singular behaviour at the (νb)n, n > 0, frequen-
cies can be seen as a sharp switchover from black
to white in the contour plot. Examining the loci
of (νb)o in Figure 4, the Helmholtz resonance ap-
pears to manifest initially as having very spiky
behaviour which quickly softens to a modest lo-
cal minimum as seen in Figure 2. As frequency
increases, Helmholtz resonance becomes indis-
tinct. Figure 5 is plotted in logrithmic scale, facil-
itating the identification of the loci of (νb)o. This
loci appears to tend to smaller frequencies as sep-
aration increases, as with all the other resonant
modes.

The results here show the effects of frequency
and separation on the behaviour of the moon-
pool resonances. However, many other parame-
ters, like draft variation, can also effect its behav-
ior. Thus, further results will be presented at the
workshop.
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