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1 Introduction

Scattering of water waves by large arrays of float-
ing or submerged bodies is of considerable impor-
tance in off-shore engineering as well as climate
research. While the standard method of solu-
tion of the full three-dimensional linear diffrac-
tion problem requires numerical methods involv-
ing the discretisation of the surfaces of all bodies,
interaction theories may be used if the bodies are
sufficiently widely spaced. However, even then
the resulting linear system of equations is of con-
siderable dimension if the number of bodies is
large.

One approach to simplify the problem is to as-
sume the array to be made up of an infinite num-
ber of identical bodies which are equally spaced.
Depending on the problem it may be useful to
consider the array to extend infinitely in both di-
rections or in one direction only. The first case,
referred to as scattering by an infinite array, is
applicable to wave scattering in the marginal ice
zone. It has recently been investigated for bodies
of arbitrary shape by Peter et al. (2006). The
second case, referred to as scattering by a semi-
infinite array, is of particular interest if edge ef-
fects are important but it is also the more com-
plicated case. However, as suggested by Linton
& Martin (2004), the utilisation of the solution
of the scattering of the infinite array can very
much simplify the (numerical) solution of the
semi-infinite scattering in a great number of sit-
uations. The scattering by an infinite array can
therefore be understood as a problem in its own
right as well as a first step towards the solution
of the scattering by a semi-infinite array.

We present here both the infinite and semi-
infinite array cases in a unified manner. We look
for the scattered wavefields of the bodies in the

array in terms of the coefficients in the expan-
sion in cylindrical eigenfunctions. Along the lines
of general interaction theories (cf. Kagemoto &
Yue, 1986; Peter & Meylan, 2004), a system of
equations is derived for the unknown coefficients
in the expansion. For the infinite array, due to
the periodicity of the geometry of the setting
as well as the ambient incident wave, it suffices
to consider the scattered wavefield of one sin-
gle body. The total scattered wavefield can be
obtained from the solution of this single body.
For the semi-infinite array, the solution of the
infinite-array problem can be used to simplify the
system of equations for the semi-infinite array.
We are also interested in the far field describ-
ing the scattering far away from the array. For
the infinite-array problem, there is a finite num-
ber of plane scattered waves travelling away from
the array while for the semi-infinite problem, the
same plane waves occur but only for some values
of the observation angle and there is also a cir-
cular wave from the edge. This is also illustrated
by simulation results.

2 Problem formulation

We consider the water-wave scattering of a plane
wave by an infinite array or a semi-infinite ar-
ray of identical vertically non-overlapping bod-
ies, denoted by ∆j. The mean-centre positions
Oj of ∆j are assumed to be Oj = (jR, 0) where
the distance between the (centres of the) bod-
ies, R, is supposed sufficiently large so that there
is no intersection of the smallest cylinder which
contains each body with any other body. In the
infinite-array case we have j ∈ Z, for the semi-
infinite array we assume j ∈ N (note that we have
0 ∈ N). The plane wave is assumed to travel in
the direction χ ∈ (0, π/2] where χ is measured



with respect to the x-axis. Let (rj, θj, z) be the
local cylindrical coordinates of the jth body, ∆j.
Note that the zeroth body is centred at the ori-
gin and its local cylindrical coordinates coincide
with the global ones (r, θ, z).

The equations of motion for the water are de-
rived from the linearised inviscid theory. Only
fixed radian frequencies ω are considered so the
time-dependence of the water velocity potential
is factored out, Φ(x, t) = Re {φ(x)e−iωt}. The
undisturbed water surface is assumed at z = 0.

Writing α = ω2/g where g is the accelera-
tion due to gravity, for water of constant finite
depth d, the potential φ has to satisfy the stan-
dard boundary-value problem,

∇2φ = 0, x ∈ D,
∂zφ = αφ, x ∈ Γf ,

∂zφ = 0, x ∈ D, z = −d,

where D is the domain occupied by the water
and Γf is the free water surface. At the immersed
body surface Γj of ∆j, the water velocity poten-
tial has to equal the normal velocity of the body
vj,

∂nφ = vj, x ∈ Γj.

The system of equations is completed by appro-
priate radiation conditions.

For future reference, we note that the positive
wavenumber k is related to α by the dispersion
relation

α = k tanh kd,

and the values of km, m > 0, are given as positive
real roots of the dispersion relation

α+ km tan kmd = 0.

For ease of notation, we write k0 = −ik. More-
over, we denote the ambient incident potential by
φIn.

2.1 Eigenfunction expansion of the po-
tential

In water of constant finite depth d, the scattered
potential φS

j (rj, θj, z) of a body ∆j can be ex-
panded in cylindrical eigenfunctions,

φS
j =

∞∑
m=0

fm(z)
∞∑

µ=−∞

Aj
mµKµ(kmrj)e

iµθj , (1)

with discrete coefficients Aj
mµ where fm(z) =

(cos km(z+d))/(cos kmd). The incident potential

φI
j(rj, θj, z) upon body ∆j can also be expanded

in cylindrical eigenfunctions,

φI
j =

∞∑
n=0

fm(z)
∞∑

ν=−∞

Dj
nνIν(knrj)e

iνθj , (2)

with discrete coefficients Dj
nν . The functions Iν

and Kν denote the modified Bessel functions of
the first and second kind, respectively.

3 The system of equations

Following the ideas of general interaction theo-
ries (Kagemoto & Yue, 1986; Peter & Meylan,
2004), a system of equations for the unknown co-
efficients of the scattered wavefields of all bodies
is developed. This system of equations is based
on transforming the scattered potential of ∆j into
an incident potential upon ∆l (j 6= l). Doing this
for all bodies simultaneously, and relating the in-
cident and scattered potential for each body, a
system of equations for the unknown coefficients
is developed. This system of equations can then
be simplified making use of the particular setting
(i.e. infinite or semi-infinite array).

After some calculations (the details of which
can be found in Kagemoto & Yue, 1986, e.g.) the
following system of equations is obtained for the
unknown coefficients of the scattered wavefields,

Al
mµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

[
DIn

lnν+

+
∑
j∈Xl

∞∑
τ=−∞

Aj
nτ (−1)νKτ−ν(kn|j − l|R)ei(τ−ν)ϕj−l

]
,

(3)

m ∈ N, µ ∈ Z and l ∈ X where X = Z in
the infinite-array case and X = N for the semi-
infinite array and Xl = X\{l}. Here, B is the
diffraction transfer operator of the body relat-
ing the coefficients of the incident and scattered
partial waves, DIn

lnν are the coefficients of the am-
bient incident wave in the expansion (2) and the
angles ϕn account for the difference in direction
determining whether the jth body is located to
the left or to the right of the lth body and are
defined by ϕn = 0 for n < 0 and ϕn = π for
n > 0.



3.1 The infinite array

For the infinite array, we can use the periodicity
of the geometry and of the incident wave to write
the coefficients Al

mµ as Al
mµ = PlA

0
mµ = PlAmµ,

say, where the phase factor Pl is defined by

Pl = eiklR cos χ.

The same can be done for the coefficients of the
incident ambient wave, i.e. DIn

lnν = PlD
In
nν . Intro-

ducing the constants

σn
ν =

∞∑
j=1

(P−j + (−1)νPj)Kν(knjR),

which can be evaluated separately since they do
not contain any unknowns, (3) reduces to

Amµ =
∞∑

n=0

∞∑
ν=−∞

Bmnµν

[
DIn

nν+(−1)ν

∞∑
τ=−∞

Anτ σ
n
τ−ν

]
.

(4)
The efficient computation of the constants σ0

ν is
not trivial but appropriate methods are outlined
in Peter et al. (2006).

3.2 The semi-infinite array

In order to avoid confusion, in what follows, we
denote the coefficients of the bodies in the semi-
infinite array by Xj

mν , j ∈ N, and the difference
between those of the infinite array and those of
the semi-infinite array by

Zj
mν = Xj

mν − PjAmν . (5)

As j becomes large, it can be expected that the
coefficients of the infinite and the semi-infinite
array become more and more similar implying
that the Zj

mν get small. Instead of solving for
the Xj

mν directly, we derive a system of equa-
tions for the differences Zj

mν and solve for these.
This allows us to only use a finite amount of bod-
ies (j = 0, . . . , N) when (numerically) solving for
the first M bodies (where M < N).

It is important to note that the Zj
mν may not

become small for increasing j in the case that a
Rayleigh-Bloch wave is excited which may hap-
pen if k cosχ < π/R (Porter & Evans, 1999).
It is a topic of current research to find condi-
tions when Rayleigh-Bloch are excited in arrays
of bodies of arbitrary shape and how to proceed if
such a wave travels down the array. In our con-
siderations, we assume that no Rayleigh-Bloch

wave is excited. In any case, the convergence of
the method can easily be checked by making sure
that the Zj

mν become small for increasing j.
Substituting (5) into (3) with X = N and

using (4) we obtain

Z l
mµ =

∞∑
n=0

∞∑
ν=−∞

Bmnµν

[ ∞∑
j=0
j 6=l

∞∑
ϑ=−∞

Zj
nϑ(−1)νKϑ−ν(kn|j − l|R)ei(ϑ−ν)ϕj−l

− (−1)νPl

∞∑
ϑ=−∞

Anϑσ̃
nl
ϑ−ν

]
as the final system of equations where the con-
stants σ̃nl

ν are defined by

σ̃nl
ν =

∞∑
j=l+1

P−jKν(knjR).

A method for the efficient computation of these
constants when n = 0 has only recently been de-
veloped by one of the authors; see Linton (2005).

4 The far field

In this section, the far field is examined which
describes the scattering far away from the array.
First, we define the scattering angles which give
the directions of propagation of plane scattered
waves far away from both types of arrays.

Letting p = 2π/R, define the scattering an-
gles χm by

χm = arccos(ψm/k) where ψm = k cosχ+mp

and write ψ for ψ0. Also note that χ0 = χ by
definition. If |ψm| < k, i.e. if

−1 < cosχ+
mp

k
< 1,

we say that m ∈ M and then 0 < χm < π. It
turns out (see below) that these angles (±χm for
m ∈M) are the directions in which plane waves
propagate away from the array.

For a derivation of the far field of the infinite
array, we refer to Peter et al. (2006). As kr →∞
away from the array axis y = 0, the far field con-
sists of a set of plane waves propagating in the
directions θ = ±χj,

φ ∼ φIn+
πi

kR

cosh k(z + d)

cosh kd∑
j∈M

1

sinχj

eikr cos(θ∓χj)

∞∑
µ=−∞

A0µ e±iµχj .



For the semi-infinite problem, the same plane
waves occur but only for some values of the ob-
servation angle and there is also a circular wave
from the edge.

5 Results

In this section we present some calculations for
arrays of ice floes. The calculation of the diffrac-
tion transfer matrices of ice floes is discussed in
Peter & Meylan (2004).

We consider ice floes with non-
dimensionalised stiffness β = 0.2 and mass
γ = 0.2 (using the non-dimensionalisation of
Peter & Meylan) in water of depth 1/2. The
spacing is R = 3, the wavelength of the ambient
incident wave is 2 and the side length of each
square ice floe is one wavelength. The ambient
wavefield is of unit amplitude and propagates in
a direction making an angle of χ = π/5 with the
x-axis. Note that we have k cosχ > π/R in this
example.

Figure 1 shows the solution for the infinite ar-
ray while figure 2 shows the solution for the semi-
infinite array under the same conditions. In the
plots of the scattered wavefields, the very special
behaviour at the edge of the semi-infinite array
can be observed. In particular, the additional
circular wave can be seen clearly.
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Fig. 1: Infinite array of ice floes (top) and scattered
wavefield (bottom).

Fig. 2: Semi-infinite array of ice floes (top) and
scattered wavefield (bottom).
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‘Scattering of water waves by arrays of arbitrary bodies’

Discusser - D.V. Evans:

According to Wilcox in his book on Diffraction Gratings, Rayleigh Bloch waves do not exist if a

Dirichlet condition is applied to the grating, but may exist if a Neumann condition is applied, although

no absolute conditions are known.

Reply:

That is a very important point. We are aware of this fact and have also found that the body geometry

seems to be of importance.

Discusser - M. Kashiwagi:

For a large number of bodies, the hierarchical wave interaction theory developed by myself can be

applied without using the periodicity assumption. In a real situation, the number of arrays must be

finite. Why don’t you consider to use the hierarchical wave interaction theory for the present problem?

Reply:

The hierarchical interaction theory is a powerful method for solving for a large number of bodies. It

would apply well to the finite-array problem. However, it is numerically more complicated than the

computations required to solve for the infinite and semi-infinite array the way we presented. Moreover,

our computations - although only approximating the finite-array problem - yield quick good results

with little numerical effort. If very accurate results are required for the finite array, the hierarchical

interaction theory should be used.


