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Introduction
Within the linearized inviscid theory of water waves, certain structures when held fixed can
support a trapped mode of a particular frequency [1]; this is a free oscillation of an unbounded
fluid with a free surface. A trapped mode has finite energy, does not radiate waves to infinity,
and will persist for all time. The significance of such a mode is that if, for a specified frequency
of oscillation, the structure doesnotsupport a trapped mode, then the solutions to the radiation
and scattering problems at that frequency are unique. Trapped modes supported by a fixed
structure cannot be excited when that structure is allowed to float freely and hence respond to
the hydrodynamic forces acting upon it [2]. In particular, modes cannot be excited in the time
domain by any incident wave or by giving the structure an initial displacement and/or velocity.
This observation led to a search forfreely-floating structuresthat are able to support trapped
modes, and to their discovery in the two-dimensional water-wave problem [3]. To distinguish
this new mode, a free oscillation that involves the coupled motion of the fluid and structure
will be called a “motion trapped mode” and the corresponding structure a “motion trapping
structure”. The significance of a motion trapped mode is that if, for a specified frequency of
oscillation, the structure does not support such a mode, then there is a unique solution to a
problem in which the structure is able to float freely.

The existence of a motion trapped mode with a frequencyω = ω0 requires the correspond-
ing hydrodynamic coefficients to satisfy two conditions at this frequency. First of all the damp-
ing must be zero, and secondly the added mass value must ensure that the equation of motion
for the structure has non-trivial solutions in the absence of any forcing. Two-dimensional struc-
tures that meet these requirements have already been constructed [3]. Here the construction is
extended to three dimensional heaving structures with a vertical axis of symmetry.

Formulation
Cartesian coordinatesx, y, z are chosen withz directed vertically upwards from the mean free
surface. Also,R, θ are used to denote spherical coordinates withθ measured from the down-
ward vertical, andr = R sin θ to measure horizontal distance from thez axis.

Consider a surface-piercing structure constrained to move freely in the vertical direction
with initial displacementZ(0) and initial velocityŻ(0). In the absence of moorings, the Fourier
transform of the time-domain equation of motion yields the frequency-domain equation[

ρgW − ω2 {M + a(ω) + ib(ω)/ω}
]
v(ω) = −iω[X(ω) +M Ż(0)]− ρgW Z(0). (1)

Hereρ is the fluid density,g is the acceleration due to gravity,W is the water-plane area,M is
the structure’s mass,a is the added mass,b is the damping,v is the (complex) amplitude of the
structural velocity, andX is the exciting force. There is a unique solution of (1) forv(ω) if[

ρgW − ω2 {M + a(ω) + ib(ω)/ω}
]
v = 0 (2)

has only the trivial solutionv = 0. Necessary conditions for the existence of a non-zerov,
corresponding to a motion trapped mode, for some particular frequencyω = ω0 are that

ρgW − ω2
0 {M + a(ω0)} = 0 and b(ω0) = 0 (3)

(the latter implies that the oscillating structure does not radiate waves). Kyozuka & Yoshida [4]
constructed wave-free structures withb(ω0) = 0 but, in general, such a structure does not



possess hydrodynamic characteristics that allow the first of equations (3) to be satisfied atω =
ω0. However, as shown below, this can be achieved for particular structures.

Denote byφ0 the velocity potential corresponding to the vertical oscillations of a wave-free
structure at frequencyω = ω0 so that, in particular,

∂φ0

∂n
= nz on Γ (4)

wheren is a normal coordinate to the wetted surface of the structureΓ, directed out of the
fluid, andnz is the vertical component of the unit normal toΓ. For vertically axisymmetric
three-dimensional motion in fluid of infinite depth any wave-free potential must satisfy

φ0 =
µ cos θ

R2
+ o

(
1

R2

)
as R→∞, (5)

whereµ is a constant and, in general, to leading orderφ0 is dipole-like at infinity. LetS denote
the union ofΓ with the free surfaceF and a closing hemisphereS∞ at infinity in z < 0. Green’s
theorem applied overS to φ0 andu = z + 1/K,K = ω2

0/g, yields after some manipulation

ρgW − ω2
0 {M + a(ω0)} = −2πµρω2

0 (6)

so that the first condition in (3) may be satisfied if and only if the dipole coefficientµ is zero.

Construction of motion trapping structures
The method of Kyozuka & Yoshida [4] yields structures with zero damping by seeking suitable
streamlines of the flows generated from wave-free potentials. The same method is used here
with the additional requirement that the wave-free potentialφ0 has a far-field dipole coefficient
µ = 0. From equation (4), if a suitable structure could be identified, the modified potential

φ = z − φ0 (7)

would satisfy
∂φ

∂n
= 0 on Γ (8)

andΓ is a stream surface of the flow corresponding toφ; motion trapping structures are obtained
from any stream surface of the flow that isolates the singularities ofφ from infinity. Here the
construction uses solutions that are singular on a circular ring of radiusc in the free surface. A
wave-free ring sourceφs and a potentialφd that is dipole-like at infinity are combined as

φ0 = δ(φs + σφd), (9)

whereδ is a free parameter andσ is chosen to ensure thatφ0 has no far-field dipole component.
ForKc = j0n, wherej0n is thenth zero of the Bessel functionJ0, a wave-free ring-source
potential is

φs = 8c

∫ ∞

0

(µ cosµz +K sinµz)I0(µr<)K0(µr>)
µ dµ

µ2 +K2
, (10)

where I0 andK0 are modified Bessel functions,r< = min {r, c} and r> = max {r, c}.
C. M. Linton (private communication) has derived a set of wave-free potentials that are sin-
gular on a ring in the free surface and dipole-like in the far field. The one used here is

φd = (coshα− cos β)1/2

{
KcP 1

2
(coshα) sin β + P 1

2
(coshα) cos β

− 1
4
P− 1

2
(coshα)− 3

4
P 3

2
(coshα) cos 2β

}
, (11)

wherePν is an associated Legendre function, and (α, β) are toroidal coordinates defined though

r =
c sinhα

coshα− cos β
and z = − c sin β

coshα− cos β
, 0 ≤ α <∞, 0 ≤ β ≤ π. (12)
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Figure 1: Stream surfaces corresponding to (13);
K = 1, c = j01, δ = 1.
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Figure 2: Structural surfaces forK = 1, c = j01

and variousδ.

Figure 3: The submerged surface of the trapping
structure corresponding toδ = 0.05 in figure 2.
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Figure 4: Heave added mass (———) and damp-
ing ( ) for the structure shown in figure 3.

The required stream surfaces are the level surfaces of

ψ = −1
2
r2 − δ(ψs + σψd), (13)

whereψs andψd are the Stokes stream functions corresponding toφs andφd. Onr = 0,

φs ∼ −
4πc

Kz2
and φd ∼

23/2Kc3

z2
as z → −∞ (14)

so that the choiceσ =
√

2π/(K2c2) ensures thatφ0 has no far-field dipole component.
Here the choiceKc = j01 ≈ 2.40 is made and a typical stream-surface pattern is shown

in figure 1. Inz < 0 a dividing stream surface separates the flow connected to large depths
from that entering the singularity. Part of this stream surface, shown as a thick line in the
figure, corresponds to the surface of a motion trapping structure. For a givenφ0 there is a
single suitable stream surface that isolates the singular ring in a suitable way. However, as the
parameterδ is varied a family of motion trapping structures is obtained and some examples are
shown in figure 2; a perspective view of one of these structures in figure 3.

Consequences of the existence of motion trapped modes
If one or both of the initial displacementZ(0) and velocityŻ(0) are non zero then from (1) the
velocity v will have a simple pole atω = ω0 and the solution to the boundary-value problem
will not exist atω = ω0. However, ifZ(0) = Ż(0) = 0 then a zero inX annuls the zero arising
from (3) andv(ω) is non-singular at the resonant frequency so that the solution exists, although
it will not be unique because any multiple of the motion trapped mode can be added to the
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Figure 5: Vertical velocityv excited by an incident wave for the structure shown in figure 3. In (b) com-
parison is made between WAMIT calculations with 8704 (– – – –) and 2176 ( ) panels on a quarter
of the wetted surface (additional free-surface panels were used to eliminate irregular frequencies).

solution. In numerical calculations this behaviour will not be captured precisely and there will
be a pole ofv(ω) close to the positive realω axis in the lower half of the complex frequency
domain. The velocity of the structure undergoes very rapid changes as a function of frequency,
but the hydrodynamic coefficients are well behaved in the vicinity ofω = ω0. The added mass
and damping coefficients corresponding to the structure in figure 3 are shown as a function of
frequency in figure 4. The rapid variations in added mass and damping associated with sloshing
in the moonpool occur well away from the motion resonance atK = ω2/g = 1. It is typical of
the motion trapping structures generated by the present method that the damping coefficient is
very close to zero over quite a wide range of frequencies around the resonant frequency.

Figure 5 shows the vertical velocity as a function of frequency when the structure is excited
by incident waves of unit amplitude. A “spike” arising from the motion trapping is evident near
K = 1. However figure 5(b) shows that the spike in the velocity is discernible only in a very
narrow band which could easily be missed, and that the spike moves closer toK = 1 as the
number of panels on the wetted surface of the structure is increased. It is difficult to compute
reliably near the resonant frequency because, when solving the equation of motion forv(ω), it
is necessary to evaluate the ratio of two quantities that are both very close to zero.

McIver and McIver [3] examined the behaviour of two-dimensional motion trapping struc-
tures in the time domain and found that if such a structure is initially at rest in its equilibrium
position, then the motion trapped mode cannot be excited by an incident wave packet. This is a
direct consequence of the zero in the exciting force atω = ω0. However, if the structure is given
an initial non-zero displacement or velocity then the mode will be excited so that after an initial
transient has died away the structure and fluid motions settle to oscillations at the trapped-mode
frequency. Similar conclusions apply to the three-dimensional structures obtained here.
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