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1 General 

 
Structures with moonpools have, or they could have, many useful applications in offshore 

technology. They can be used for wave trapping or for other offshore operations such as pipe laying 
or recovery of divers. Examples of recent works dealing with moonpools are those reported by 
Shipway and Evans (2002) and McIver and Newman (2003) who studied trapping structures with 
two moonpools. Newman (2003) analyzed the low frequency resonant modes for moonpools with 
variable cross section. Molin (2001) presented a study for the piston and sloshing modes in 
rectangular moonpools of large horizontal dimensions. Here, we present a solution for the second-
order diffraction problem for a piston-like arrangement that consists of two cylindrical structures 
with an annular moonpool between them. The solution method is based on the semi-analytical 
formulation for the second-order diffraction potentials which was proposed by Huang and Eatock 
Taylor (1996) and which was extended recently by Mavrakos and Chatjigeorgiou (2006) for ring-
shaped fluid domains that extend up to the free surface. The arrangement that is considered in this 
work was investigated recently by Mavrakos (2004, 2005) assuming linear potential theory. The 
main objective of this work is to investigate to a certain extent the contribution of the second-order 
potential to both the vertical exciting forces on the interior piston-like cylinder and the water motion 
in the annulus between the internal and external bodies.   

 
2 Formulation and Solution  

   
The main objective of the present work is the derivation of the second-order diffraction 

potentials in all fluid regions surrounding the bodies and through these, the calculation of the 
second-order forces and the nonlinear wave elevation around the bodies. The incident waves are 
considered to be monochromatic with amplitude H/2. The method that is adopted for the 
mathematical description of the potentials in the external fluid region A and the moonpool C, see 
Fig. 1,  is based on the semi-analytical formulation proposed by Huang and Eatock Taylor (1996). 
As all boundary conditions involved in the hydrodynamic problems of the lower fluid regions B and 
D are homogeneous, the second-order diffraction potentials will be given by equations similar to 
those of the first-order problems. The corresponding formulation was taken from the work reported 
by Mavrakos (2005). Thus, the total second-order diffraction potentials in fields B and D will be 
given by: 
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where εn=1 for n=0 and εn=2 for n≥1 and ( )rR B
mn

)2(  and ( )rR B
mn

)2(~  are properly constructed functions 
that depend on the radial solutions of the potentials, e.g. the modified Bessel functions Im and Km.  

Following Huang and Eatock Taylor (1996) and Mavrakos and Chatjigeorgiou (2006), the total 
second-order diffraction potential in the outer fluid domain A will be composed by the incident 
wave I

2ϕ , a 'locked' wave and a 'free' wave component. The latter two, which are denoted by the 
superscripts DD and ID respectively, are expressed as: 
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where κj are the solutions of the second-order transcendental equation satisfied at the free surface of 
the outer field A and Zj are the corresponding vertical eigenfunctions. Furthermore, )( A

mQ is the 
nondimensional form of the inhomogeneous term of the second-order boundary condition on the 
free surface and )( A

mjG is the appropriate Green function which is obtained by solving the relative 
Sturm-Liouville problem.  

 Recently, Mavrakos and Chatjigeorgiou (2006) developed a solution for the upper inner region 
defined by the geometry of a vertical compound cylinder. The specific formulation can be easily 
extended for describing the second-order diffraction potential in the moonpool C, provided that the 
height of the step on the compound cylinder will be set to zero. As a result, the total second-order 
velocity potential in the moonpool will consists of the incident wave I

2ϕ , a free wave component 
and a trapped wave component, denoted by ID and DD respectively. These will be given by the 
following: 
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Again, ( )rR C
mj

)2(  and ( )rR C
mj

)2(~  are properly constructed radial functions that depend on the 

modified Bessel functions Im and Km, )(C
mQ  is the nondimensional form of the radial dependent 

effective pressure distribution on the free surface of the moonpool and )(C
mjG  is the one-dimensional 

Green's function obtained by the solution of the corresponding Strum-Liouville problem for region 
C.  

The problem will be considered completely resolved after obtaining the Fourier coefficients in 
all subdomains defined in Fig. 1. This is achieved by enforcing the continuity of velocities and 
potentials along the boundaries of the individual fluid regions A, B, C and D.  
 
3 Results and Discussion 
 

In this section we present the results for the first- and second-order vertical exciting forces on 
the inner 'piston' and for the free surface elevation in the moonpool. In particular the wave run-up 



depicted herein corresponds to the wave frequency of the resonant water motion in the interior 
basin. First- and second-order vertical exciting forces have been normalized by 1/2ρgb2(H/2) and 
1/2ρgb(H/2)2 respectively, while the depicted second-order force component was obtained by the 
second-order diffraction potential only. The second-order wave elevation )2(

2
)1(

22 ηηη +=  was 

normalized by (H/2)2/b. The relative dimensions of the two bodies are determined by b1/b=0.3846, 
b2/b=0.5385, h2/h=0.68 and h/b=1.923 while three different draughts for the inner body were 
investigated: h1/h=0.5, 0.68 and 0.80. The resonant water motions occur approximately at kb≈1.25 
for h1/h=0.5 and 0.68 and at kb≈1.4 for h1/h=0.8. (Figs 6-8). As can be seen the second-order force 
peaks occur exactly at the same wave frequencies. Although the magnitudes of the first-order 
vertical exciting wave forces at the resonant water motion frequencies appear to increase for smaller 
piston draughts, no similar trend is observed for their second-order counterparts. On the other hand 
the values of the second-order forces are extremely high compared to the first-order ones. The latter 
remark could be proven very useful in practical applications as the total hydrodynamic force will be 
definitely underestimated by the linear potential theory. As can be easily seen, the abrupt jump of 
the second-order diffraction force is closely related to the resonant water motions in the moonpool. 
The free surface elevation curves depicted in Figs 2-4 represent the total wave run-up that was 
calculated by the first- and the second-order diffraction potentials at the frequency of the resonant 
water motion.  In all cases the wave run-up on the exterior of the outer cylinder is rather smaller 
than the water elevation in the moonpool. Furthermore, no worth mentioning variation of the wave 
run-up is observed with respect to the azimuthal angle in the moonpool for h1/h=0.5 and 0.68 while 
for h1/h=0.8 the wave elevation appears to be extremely high at the lee side of the piston.  

It should be also highlighted that the level of the water on the endmost limits of the moonpool, 
i.e., the outer surface of the inner body and the inner surface of the outer body, is approximately the 
same. Additionally, the variation of the water level on the circumferences of the endmost limits 
follows more or less the same trend. Nevertheless, it should be mentioned that the free surface in 
the moonpool at the location, where the resonant water motions occur, exhibits strong disturbances. 
Although this is not noticeable in the surface plot of Fig. 5 due to small width of the moonpool, the 
validity of the latter remark is supported by the variety of the levels of the contours.  
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Fig. 1: Main dimensions and fluid regions 
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Fig.2: Wave run-up for h1/h=0.50, kb=1.25 
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Fig.3: Wave run-up for h1/h=0.68, kb=1.25 

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

azimuthal angle (deg)

|n|

run−up at r=b1
run−up at r=b2
run−up at r=b

 
Fig.4: Wave run-up for h1/h=0.80, kb=1.4 
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Fig. 5: Free surface elevation in the 
moonpool, h1/h=0.68, kb=1.25 
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Fig. 6: Heave forces on the inner body, h1/h=0.5 
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Fig. 7: Heave forces on the inner body, h1/h=0.68 
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Fig. 8: Heave forces on the inner body, h1/h=0.8 
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Discusser - M. Longuet-Higgins:

(In reply to chairman’s criticism that some second-order terms were larger than the first-order terms.)

The second-order pressure fluctuations in standing waves are not attenuated exponentially with depth

like the first-order terms, and so can be much larger. This was first verified experimentally by R.I.B.

Cooper and M.S. Longuet-Higgins in ‘An experimental study of the pressure variations in standing

water waves’, Proc. R. Soc. Lond. A. 206 (1951), 424-435.

Reply:

Thank-you for your comments.


