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Summary. It is known that perfectly trapped surface waves exist at certain eigen frequen-
cies near a vertical cylinder in a long channel, or an infinite and periodic array of vertical
cylinders, and excitation by incident waves of the same frequency is not possible according
to the linear theory. We present a nonlinear theory whereby a trapped wave near a cylinder
in a channel is excited subharmonically by an incident wave of twice the eigen frequency.

——————————————————————————————-

The linearized theory of water-wave trapping either by a stationary body in a channel or
by an infinite and periodic array of fixed bodies has been extensively treated by Evans and
his associates in the past decade (See Evans & Linton, 1991), Callan et al. (1991), Evans &
Porter (1999). Maniar & Newman (1997), Linton & Evans, 1992a), Evans et al (1994), Evans
& Porter (1997, 1998) and Utsunomiya & Eatock Taylor (1999)). The occurence of these
modes around a multi-legged structure such as an offshore airport may pose a threat to the
safety of the installation, hence is of engineering interest. According to the linearized theory,
perfectly trapped modes cannot be resonated by incident waves of the same frequency, since
no propagation is possible below cut-off. Only in the case of a finite number of periodically
spaced cylinders in an infinite sea, is there no cut-off, and trapping is imperfect. Synchronous
resonance can be predicted by a linear theory as in Maniar & Newman (1997). However,
amplification at resonance is found to increase with the number of cylinders, when real fluid
effects are not included.

In coastal oceanography it is known that trapped edge waves can also be present on a
sloping beach. In the ideal case of an infinite and uniform beach, trapping is also perfect.
Though not synchronously by the incident sea, an edge wave can be resonated subharmoni-
cally by incident waves of twice the frequency, as studied by Guza & Davis (1974), Guza &
Bowen (1976), Minzoni & Whitham (1977) and Rockliff (1978). Of more recent interest in
coastal engineering is the case of mobile barriers for protecting Venice Lagoon from storm
tides. Experiments have revealed that normally incident sea waves can force the neighboring
gates to oscillate in opposite phases, at half the frequency. The cause for this oscillation
was later found to be the existence of trapped modes owing to the periodic and mobile con-
struction Mei et al, 1994). A nonlinear theory for monochromatic incident waves, similar to
the subharmonic resonance of edge waves, has been given by Sammarco et al. (1997a), and
confirmed by laboratory experiments. Extension to narrow-banded incident waves further
revealed that resonance can become chaotic, which has also been verified by experiments
Sammarco et al. (1997b).

In view of the possible importance to offshore structures involving a periodic array of
cylinders, we present here a nonlinear theory for subharmonic resonance of waves trapped
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by a vertical cylinder in a channel, that is mathematically equivalent to an infinite array of
periodically spaced cylinders. The evolution equation for the amplitude of the trapped mode
is found analytically to be of Landau-Stuart form. The main task of calculating the coupling
coefficients is achieved by solving a number of scattering or radiation problems. By numerical
solution of these problems, the effects of the geometry on the resonance characteristics are
examined.

We consider a bottom-mounted circular cylinder of radius a′ fixed at the center of a
channel of width 2d′ and depth h′. Let a Cartesian coordinate system be chosen such that
the (x′, y′) plane coincides with the still free surface and z′ points upward along the cylinder
axis. A train of plane waves of amplitude A′ arrives along the positive x′ axis towards
the cylinder. Let the fluid be incompressible and inviscid, and the flow be irrotational.
Dimensionless variables are defined by using the spacing d′ to scale the coordinates, cylinder
radius and depth, and by using the typical amplitude A′ to scale the free surface displacement.
Similar to the excitation of trapped waves along a sloping beach (Minzoni & Whitham, 1977)
or around the mobile gates of Venice (Sammarco et al., 1997a,b), it can be shown that a
trapped wave of natural frequency ω and amplitude O(1) can be excited nonlinearly by an
incident and scattered wave system of order ε at the frequency 2ω. The long time scale of
resonant growth is of the order 1/ωε2.

Upon introducing the slow time τ = ε2t and the expansions Φ=Φ0 + εΦ1 + ε2Φ2 + · · · ,
where Φn are functions of (x, y, z; t, τ), we obtain the governing perturbation equations for
the first three orders, n = 0, 1, 2. Except for the boundary condition on the free surface,

∂Φn

∂z
+

∂2Φn

∂t2
= Fn, on z = 0, (1)

all other conditions are homogeneous.
At the leading order, the boundary-value problem is homogeneous because F1 = 0. Let

the eigenfunction be expressed as

Φ1 =
B

2
ϕ1(x, y, z)e−iωt + ∗ =

B

2 iω

cosh k(z + h)

cosh kh
η(x, y)e−iωt + ∗, (2)

where B(τ) is the complex amplitude, and asteriks denote complex conjugates. The spatial
factors ϕ1 and η satisfy the no-flux condition on channel walls and is antisymmetric about
the channel middle plane y = 0. As shown in Callan et al. (1991), a trapped mode symmetric
in x exists for all cylinder radius 0 < a < 1 below the cutoff wavenumber k < π/2. Only
in the small range of 0.81 < a < 1, a second trapped mode antisymmetric in x with a
different eigen-frequency exists (Evans & Porter, 1999). In the present study, we focus our
attention only on the x-symmetric mode; the second mode can be treated similarly. For
a vertical cylinder of circular cross-section, the eigen-wavenumber k depends only on the
dimensionless radius a. Through the dispersion relation the eigen-frequency ω depends on
the water depth in addition.

For any body geometry, the eigenvalue problem can be solved numerically by the hybrid-
element technique (Chen & Mei, 1974; Mei, 1989). The basic idea is to employ two-
dimensional finite elements only near the body where the geometry is complex, and analytical
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representations via eigenfunction expansions in the far field. The expansion coefficients in
the far fields are found by a variational method along with the nodal unknowns in the near
field.

At the order O(ε), the free surface condition is no longer homogeneous where F2 is given
by

F2 =
B2

2
qe−2iωt + ∗, with q =

1

2 iω

(
2η2

x + 2η2
y + (3ω4 − k2)η2

)
. (3)

Let the total solution be the sum of three parts Φ2 = ΦI +ΦS +ΦQ. where ΦI and ΦS are
the incident and scattered wave potentials, respectively, and ΦQ is the radiated wave forced
on the free surface by quadratic interactions. The diffraction problem for frequency 2ω is
standard in the linearized theory. The hybrid-element numerical scheme is used to compute
the scattered waves near and away from the cylinder for a wide range of frequencies.

Since the forcing function on the free surface (3) contains only the second harmonic, we
express

ΦQ =
1

2
B2ϕQe−2iωt + ∗, (4)

so that ϕQ must satisfy the inhomogeneous free-surface condition:

∂ϕQ

∂z
− 4ω2ϕQ = q, (5)

and the radiation condition that only outgoing waves exist at infinity.
Again the hybrid element method is used to solve for ϕQ. The far-field representation

is easily found by separation of variables. In the near field, ϕQ will be approximated by
three-dimensional finite elements with nodal unknowns. Along the interfaces x = ±L of the
near and far fields, ϕQ and its x- derivative must be continuous. The combined problem
for the entire channel is converted to a variational problem. Extremization leads to a linear
matrix equation for the nodal unknowns and the expansion coefficients, and is then calculated
numerically.

Finally, at the order O(ε2), the free surface condition is inhomogeneous; forcing on the
free surface contains first and third harmonics in time,

F3 = F31e
−iωt + F33e

−3iωt + ∗. (6)

It can be shown that F31 decays exponentially in |x| as the trapped wave. Let the third-order
wave potential be expressed by

Φ3 = ϕ31(x, y, z)e−iωt + ϕ33(x, y, z)e−3iωt + ∗. (7)

It can be shown that ϕ31 is governed by an inhomogeneous boundary-value problem whose
homogeneous solution is ϕ1. The solvability condition of the inhomogeneous problem for ϕ31

is found by applying Green’s theorem to ϕ1 and ϕ31 over the entire fluid domain. After using
all the governing conditions, we find the evolution equation of the trapped wave amplitude
B(τ)

−i
dB

dτ
= cαB2B∗ + cγAB∗, (8)
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Figure 1: Bifurcation diagram relating the action I of equilibrium state and detuning fre-
quency Ω for Re(cα) < 0 (LEFT), and Re(cα) > 0 (RIGHT). Solid line: stable branch;
Dashed line: unstable branch.

which is of the Landau-Stuart form. If there is a small frequency detuning, the Landau-Stuart
equation (8) becomes, after the transformation B = B̄e−iΩτ ,

−i
dB̄

dτ
= cα|B̄|2B̄ + ΩB̄ + cγB̄

∗. (9)

The mathematical properties of this Landau-Stuart equation have been studied by Rockliff
(1978) for edge waves on a beach. Let B̄ be expressed in action-angle variables, i.e., B̄ =√

Ieiθ. For Re(cα) < 0, the non-zero equilibrium state is shown as a right-leaning ellipse in
the bifurcation diagram on the left of Figure (1), similar to a Duffing oscillator with a hard
spring. Stable and unstable branches of the ellipse are shown in solid and dashed curves,
respectively. Thus hysteresis is possible when the detuning frequency is varied. On the other
hand when Re(cα) > 0, the bifurcation diagram is a left-leaning ellipse, as shown on the right
of Figure (1), similar to a soft spring. For physical understanding the dependences of the
various coefficients on the cylinder-channel geometry have been examined from numerical
solutions, and will be reported at the conference.

Since the mathematical problems of subharmonic resonance of trapped waves are essen-
tially the same, be it an edge wave on a beach, a trapped mode around Venice gates, or a
trapped mode around periodic cylinders, it is natural to anticipate that all trapped waves,
whether around a stationary or mobile boundary, can be excited by the same mechanism.

We acknowledge with gratitude the financial support by U.S. Office of Naval Research
(Grant N00014-04-1-0077, Ocean and Marine Technology Program, headed by Dr. Thomas
Swean).
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Discusser - D.V. Evans:

How is it possible to generate an anti-symmetric trapped mode φ1 by a symmetric wave?

Reply:

In a linearized problem the response potential has the same spatial symmetry as the incident wave. In

the nonlinear problem resonance is not forced directly by the incident wave, but by the interaction of

the incident wave and the trapped wave, represented by the product AB∗ in eq (8). Since the incident
wave is symmetric in y while the trapped wave is antisymmetric, the forcing is antisymmetric. Note
that nonlinear resonance is an instability problem; there has to be some trapped wave for it to be

started. The incident-scattered wave system serves as a promoter. This is unlike linearized resonance

which is an inhomogeneous problem mathematically and can be started from nothing.


