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SUMMARY
We consider a two-dimensional problem of floating plate which starts suddenly to penetrate water. The analysis is
focused on early stage, during which the hydrodynamic loads are high. The liquid is assumed ideal and incompressible,
gravity and surface tension effects are not taken into account. Method of matched asymptotic expansions is used to
derive second-order uniformly valid solution of the problem. Non-dimensional plate displacement plays the role of the
small parameter of the problem. The initial flow close to the plate edges is approximately self-similar and is governed by
non-linear boundary-value problem with unknown shape of the free surface. The non-linear self-similar inner solution is
matched to the second-order outer solution and is obtained numerically by the boundary-element method. The pressure
distribution along the plate is obtained with the help of the nonlinear Bernoulli equation. The hydrodynamic pressure
is integrated asymptotically with the aim to derive evolution of the hydrodynamic force acting on the plate during the
early stage of impact. It is shown that the inner solution provides important contribution to the hydrodynamic force. We
obtained that the initial asymptotics of the loads involve negative non-integer powers of the plate displacement and the
log-term.

1. INTRODUCTION

The initial stage of two-dimensional flow caused by a sud-
den vertical motion of a plate initially floating on a still
liquid surface is considered. No air is assumed entrained
at the plate-liquid interface. The liquid flow is assumed
plane, symmetric and potential. Both surface tension and
the gravity are not taken into account. Viscous effects are
assumed of minor importance and are neglected. The liq-
uid is assumed ideal and incompressible. We shall obtain
initial asymptotics of the hydrodynamic force acting on the
moving plate.

The two-dimensional problem, which is under consid-
eration in the present study, has rather limited applica-
tion. However, the corresponding axisymmetric problem
of circular disk impact (see [1]) is of importance in the pro-
cesses of water entry of a body with flat nose. We expect
that the asymptotic analysis developed in this paper for
two-dimensional case will be helpful for analysis of three-
dimensional problems of water impact.

It is well known (see [1], [2], [3]) that independently of
the model adopted to describe the flow and loads, due to ini-
tial mismatch of the boundary conditions at the water line,
an initial time interval exists during which hydrodynamic
loads provided by numerical simulations are meaningless.
This is why it is suggested to obtain the initial asymptotics
of the flow and loads and use them as initial data for long-
time solvers.

Such initial asymptotics were obtained for 2D problem of
a floating flared body, which starts suddenly to enter water
(see [4]). The flow domain was divided into the main flow
region, where second-order outer velocity potential has been
obtained, and small vicinities of the intersection points,
where the leading order inner solution was computed and
matched to the outer solution. The dimension of the vicini-
ties was dependent on the penetration depth and the dead-
rise angle of the floating body at the intersection points.
Uniformly valid pressure distribution was also obtained and
used to derive the initial asypmtotics of the hydrodynamic
force acting on the body during initial stage of its motion.

It was obtained that non-integer powers of body displace-
ment appear in the initial asymptotics of the loads. For
bodies with the flare angle less than 45o, negative powers
were discovered in the initial asymptotics. Numerical calcu-
lations in [4] were performed for the case of floating wedge
impact. However, the developed theory can be used also for
the problem of flat plate impact (see section 2). It should
be noticed that for a flat plate the second-order outer pres-
sure distribution is not integrable, in contrast to the case of
floating wedge impact, which requires more careful match-
ing procedure and special care in deriving the force asymp-
totics valid for small times (see section 4). It is shown in
this paper that the initial asymptotics of the loads acting
on a flat plate involve not only negative powers of the plate
displacement but also log-term.

The problem of flat plate impact was analyzed both nu-
merically and theoretically in [5] for constant velocity of the
plate after the impact. The inner solution, which is valid
close to the plate edges, has been obtained and matched
to the leading order outer solution in the main flow region.
Note that the first-order outer solution was given by the
pressure-impulse theory (see [5]). The asymptotic analysis
presented in [5] is generalized in section 3 to the case of
plate entry at variable velocity. The results from [4] are
taken into account in section 3.

The asymptotic analysis of initial stage of plate impact is
performed by using non-dimensional variables. Half-length
of the plate L is taken as the length scale and the initial
plate velocity V0 as the velocity scale. The time scale is
equal to L/V0, the pressure scale ρ0V

2
0 and the scale of

the hydrodynamic force is ρ0V
2
0 L according to [4], where

ρ0 is the liquid density. The non-dimensional penetration
depth h(t) is positive with h(0) = 0 and ḣ(0) = 1, where an
overdot stands for the time derivative.

2. SECOND-ORDER OUTER SOLUTION

The irrotational flow caused by plate impact is described by
the complex velocity potential w(z, t) = ϕ(x, y, t)+iψ(x, y, t),
where z = x + iy, ϕ(x, y, t) is the velocity potential and



ψ(x, y, t) is the stream function. The complex potential
w(z, t) is an analytical function in the flow region Ω(t), de-
cays at the infinity, x2 +y2 →∞, and satisfies the following
boundary conditions

ψ = ḣ(t)x (y = −h(t), |x| < 1), (1)

ϕt +
1
2
|∇ϕ|2 = 0, ϕy = ηxϕx + ηt (y = η(x, t)), (2)

where equation y = η(x, t) describes the elevation of the
liquid free surface, the function η(x, t) can be multi-valued,
η(−x, t) = η(x, t), η(x, 0) = 0 where |x| > 1 and η(x, t) →
0 as |x| → ∞. Once the velocity potential ϕ(x, y, t) has
been obtained, the non-dimensional hydrodynamic pressure
p(x, y, t) is calculated as

p(x, y, t) = −ϕt −
1
2
|∇ϕ|2. (3)

The vertical force F (t) acting on the moving plate is given
as

F (t) =

1∫
−1

p[x,−h(t), t] dx. (4)

We shall determine the asymptotic behaviors of both the
complex potential w(z, t), z = x+iy, and the hydrodynamic
force F (t) as t → 0 up to the terms of the orders o(t) and
o(1), respectively. Here o(1) designates the terms which
tend to zero and o(t) the terms which tend to zero faster
than t as t→ 0.

The theory developed in [4] provides that the second-
order complex velocity potential is given as

w(z, t) = ḣ(t)w0(z) + hḣw1(z) + o(t), (5)

where the first term corresponds to the pressure-impulse
solution and the second term describes the evolution of the
flow after the impact. In the case of plate impact we find

w0(z) = i
(
z −

√
z2 − 1

)
,

w1(z) =
1
2
[w′0(z)]

2 +
iC0(t)√
z2 − 1

,

where C0(t) is a real function which should be determined
by using the matching between the second-order outer and
the inner solution. The velocity potential along the plate,
|x| < 1, y = 0, is obtained in the form

ϕ = −ḣ
√

1− x2 +
hḣ/2
1− x2

− hḣ− hḣC0(t)√
1− x2

+ o(t). (6)

Equation (6) indicates that the outer solution is not valid
close to the plate edges, where the second-order term be-
comes of the same order of magnitude as the leading order
term. Dimension of the vicinity of the plate edge, where
the outer asymptotics (6) is not valid, can be estimated by
equating the orders of the first and the second terms in (6),
which is rewritten in the inner variables u and v

x = 1 + a(t)u, y = a(t)v.

Along the plate, we have u = −r, where r is the distance
from the plate edge in the inner variables, and equation (6)
takes the form

ϕ = −ḣ
√
ar
√

2 + ar +
hḣ/2

ar(2 + ar)

−hḣ− hḣC0(t)√
ar
√

2 + ar
+ o(t), (7)

where the first and the second terms are of the same order
as h→ 0 if and only if

a(t) = [Bh(t)]
2
3 .

The positive constant B is not defined in this analysis but
the results of [5] show that it is convenient to assign B =
3/
√

2. With this value of the constant B equation (7) can
be presented as

ϕ =
√

2a
1
2 ḣ

{
−
√
r +

1
12r

− hC0(t)
2a

1√
r

}
+O(h

2
3 ). (8)

Note that we keep the term with C0 in (8) because we do
not know the order of this coefficient as h → 0. In order
to determine this coefficient and to resolve the singularity
of the velocity potential close to the plate edge, we need to
obtain the inner solution of the plate impact problem.

3. LEADING ORDER INNER SOLUTION

The inner variables are introduced as

x = 1 + a(t)u, y = a(t)v,

ϕ =
√

2a
1
2 ḣφ(u, v, t), η = aζ(u, t). (9)

By substituting (9) into boundary conditions (1), (2), en-
forcing the Kutta conditions at the plate edge and by us-
ing equalities aȧ =

√
2aḣ, 2a/ȧ = 3h/ḣ, we obtain the

boundary-value problem, which governs the non-linear flow
near the plate edge

φuu + φvv = 0 in Ω (10)

φv = −
√
a/2 (v = 0, u < 0), (11)

φ− 2(uφu + vφv) + φ2
u + φ2

v = −(3h/ḣ)[φt + ḧφ], (12)

ζ−(ζuu+ζvv)+φuζu−φv = −3h
2ḣ
ζt (v = ζ(u, t)), (13)

ζ(0, t) = −h
a
, ζu(0, t) = 0, (14)

φ→
√
r sin θ/2 as r =

√
u2 + v2 →∞ , (15)

where θ is the angular coordinate, u = r cos θ and v =
r sin θ. Equation (15) is obtained by enforcing the matching
between the outer limit of the inner solution and the inner
limit of the outer solution given by equation (5). The Kutta
conditions (14) imply that we are searching for the free sur-
face shape, which is attached tangentially to the plate edges
at any time.

In the leading order as h → 0, the right-hand sides of
equations (11) - (14) should be taken zero. Therefore, in
the leading order the inner flow is self-similar, non-linear



and with unknown in advance shape of the free surface.
The corresponding boundary-value problem is identical to
that derived in [5] for the case of plate motion at a constant
velocity. The solution of this problem was obtained numer-
ically in [5]. Asymptotic analysis provides that the inner
velocity potential along the plate in the far field behaves as

φ = −
√
r +

C1√
r

+
1

12r
+ o(r−1), (16)

when r → ∞. The coefficient C1 in the far-field asymp-
totics (16) was evaluated as a part of the inner solution. It
was found that C1 ≈ −0.41. Comparing the inner limit of
the second-order outer solution (8) with the far-field asymp-
totics of the leading order inner solution (16), we obtain that
these solutions match each other if

C0(t) = 2a(t)|C1|/h. (17)

4. PRESSURE DISTRIBUTION

Equation (17) makes it possible to present the second-order
velocity potential along the plate as

ϕ = −ḣ
√

1− x2 +
hḣ/2
1− x2

− h
2
3 ḣC̃0√
1− x2

− hḣ+ o(t), (18)

where C̃0 = 2|C1|B
2
3 . The pressure in the main flow region

is calculated with the help of equation (3), where we disre-
gard terms which tend to zero as h→ 0. By using the body
boundary condition, we find

p(x, 0, t) = −ϕt(x, 0, t)−
1
2
ϕ2

x(x, 0, t)− 1
2
ḣ2 + o(1). (19)

Substituting (18) into (19) and omitting the term of the
order of o(1), we obtain

p(x, 0, t) = ḧ
√

1− x2 + ḣ2 − ḣ2

1− x2
+

+
2
3
C̃0ḣ

2h−
1
3

1√
1− x2

+ o(1). (20)

Note that the third term in (20) is not integrable.
In the inner region, the pressure is given as

p(u, 0, t) = − ḣ
2

a
[φ2

u + φ− 2uφu + o(1)]. (21)

Equation (6) provides for v = 0 and u = −r

φ2
u + φ− 2uφu = φ2

r + φ− 2rφr =
2C1√
r

+
1
2r

+ P (r),

where rP (r) → 0 as r → ∞. It can be shown that the
pressure in the inner region can be presented in the form

p(u, 0, t) = − ḣ
2

a

[ α√
r + β

+ S(r) + o(1)
]
, (22)

where α = 2C1, β = (4|C1|)−1 and S(r) is an integrable
function on the interval 0 < r < ∞. In numerical calcu-
lations we compute the potential distribution φ(r, 0) along

the plate, r > 0, together with its first derivative φr(r, 0)
and then evaluate the function S(r) with the formula

S(r) = φ2
r + φ− 2rφr −

α√
r + β

.

5. HYDRODYNAMIC FORCE

It is seen that both the outer (20) and the inner (22) pressure
distributions are not integrable. In order to evaluate the to-
tal hydrodynamic force by using equation (4), we divide
the plate surface into two regions: the main region, where
0 < x < 1 − aλ, and the inner one, where 1 − aλ < x < 1.
Here λ is a large parameter such that λ� 1 but aλ

3
2 � 1.

For example, one can take λ = a−
1
2 . Note that time t and

the function a(t) are considered as parameters now. In the
main region, the pressure is given by equation (20) and in
the inner region by equation (22). It is suggested to cal-
culate separately the contributions of the pressure in the
main region and in the inner region to the total hydrody-
namic force and to check that the total force is independent
of the parameter λ up to the terms of the order of o(1) as
h→ 0. This technique has been used in [6] for calculations
of the second-order hydrodynamic force within the higher-
order Wagner theory of wave impact.

The total force acting on the plate is calculated as

F (t) = lim[Fmain(t) + Finner(t)] + o(1), (23)

where

Fmain(t) = 2
∫ 1−aλ

0

p(0,−h, t)dx, (24)

Finner(t) = 2
∫ 1

1−aλ

p(0,−h, t)dx. (25)

The limit in (23) is taken as a → 0, λ → ∞ and aλ
3
2 → 0

at the same time.
We start with equation (25), where the pressure is given

by (22). By using x = 1− ar and (22), we obtain

Finner(t) = −2ḣ2

∫ λ

0

[ α√
r + β

+ S(r) + o(1)
]
dr.

Neglecting the terms, which give small contribution as λ→
∞ and a→ 0, one obtains

Finner(t) = 4|C1|ḣ2

∫ λ

0

dr√
r + β

− 2ḣ2J + o(1), (26)

where
J =

∫ ∞

0

S(r)dr

and ∫ λ

0

dr√
r + β

= 2
√
λ− β lnλ+ 2β lnβ + o(1). (27)

In equation (24), the pressure is given by (20), which
provides

Fmain(t) = 2ḧ
∫ 1−aλ

0

√
1− x2dx− 2ḣ2

∫ 1−aλ

0

dx
1− x2



+2ḣ2[1− aλ] +
4
3
C̃0ḣ

2h−
1
3

∫ 1−aλ

0

dx√
1− x2

+ o(1). (28)

Special care is required to obtain the asymptotics of the
third integral in (28). We find∫ 1−aλ

0

dx√
1− x2

=
π

2
− 2

√
aλ

2

∫ 1

0

dξ√
1− ξ2aλ/2

=
π

2
−
√

2aλ+O([aλ]
3
2 ).

By substituting the latter asymptotic formula in (28) and
evaluating the integrals, we obtain

Fmain(t) =
π

2
ḧ− ḣ2 ln

(2− aλ
aλ

)
+ 2ḣ2

+
4
3
C̃0ḣ

2h−
1
3

[π
2
−
√

2aλ+O([aλ]
3
2 )

]
+ o(1), (29)

where the terms, which tend to zero as a→ 0, λ→∞ and
aλ

3
2 → 0, as designated as o(1). By algebra

4
3
C̃0ḣ

2h−
1
3 ×

√
2aλ = 8|C1|ḣ2

√
λ.

Equation (29) takes now the form

Fmain(t) =
π

2
ḧ+ ḣ2

[
2− ln 2 +

2
3

lnB
]

+
2
3
ḣ2 lnh+ ḣ2 lnλ+

2π
3
C̃0ḣ

2h−
1
3 −8|C1|ḣ2

√
λ+o(1). (30)

Substituting equations (26), (27) and (30) into (23), we note
that the terms with λ cancel each other with the result

F (t) =
π

2
ḧ+ γḣ2h−

1
3 +

2
3
ḣ2 lnh

+ḣ2
[
2− 2 ln(4|C1|)− ln 2 +

2
3

lnB − 2J
]

+ o(1), (31)

where γ = 4π
3 |C1|B

2
3 . In (31), the first term comes from

the leading order approximation and other terms describe
the higher-order effects.

6. FREE-FALLING PLATE

We consider a plate of mass M per unit length, which falls
down onto water surface from a height H. Without account
for the aerodynamic force acting on the plate before the
impact, the plate velocity V (−0) just before the plate con-
tact with water is given as V (−0) =

√
2gH, where g is the

gravity acceleration. During the very early stage the first
term in (31) is of the major importance and we obtain the
well-known formula for the velocity of the plate V (+0) at
the end of this stage as

V (+0) =
V (−0)
1 + ν

, ν =
π

2m
, m =

M

ρ0L2

This is V0 = V (+0), which is taken as the velocity scale in
the present analysis.

We perform here simplifies analysis of the plate motion
after the impact by taking only two main terms in the hydro-
dynamic force (31). The plate motion after impact instant
is governed in the non-dimensional variables by the equation

(m+
π

2
)ḧ ≈ −γḣ2h−

1
3 .

The latter equation can be integrated with the initial con-
ditions h(0) = 0 and ḣ(0) = 1 with the result

ḣ(t) ≈ exp[− 3γ
2m+ π

h
2
3 ]. (32)

Equation (32) shows that the plate velocity continues to
decrease sharply after the impact instant due to the higher-
order effects.
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The plate velocity after the impact instant is shown in
dimensional variables in figure 1 for the following impact
conditions

M = 50kg/m, H = 2m, L = 0.5m.

Calculations provide V (−0) = 6.26m/s, m = 0.2, γ = 2.83
and V0 = 0.7m/s. In figure 1, the solid line corresponds
to the plate velocity provided by equation (32), the dashed
line is the prediction by the leading order theory and the
dotted line gives the plate velocity evolution, when three
first terms are taken into account in equation (31). The
vertical axis is for the plate velocity measured in meters per
second and the horizontal axis is for the penetration depth
measured in centimeters. It is seen that that the log-term
in (31) provides important contribution. However, the most
important finding is that the plate velocity sharply drops
after the impact instant due to the higher-order terms in
the initial asymptotics of the hydrodynamic force.
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