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A 2D unsteady analysis of an elastic cylindrical circular shell that enters a thin layer of an ideal
incompressible liquid is considered. At an initial instant of time, the cylinder touches the liquid free
surface at a single point and then begins to penetrate the liquid layer at a constant vertical velocity.
The flow field is divided into four distinct regions that exhibit different properties: the region beneath
the entering surface, the jet root, the spray jet, and an outer region. A complete solution is obtained via
matching of the solutions within the four subdomains. The problem is coupled because the liquid flow,
the shape of the elastic shell and the geometry of the contact region between the body and the liquid
must be determined simultaneously. The analysis is based on the normal-mode method with focus on
strain-time histories of the inner surface of the cylinder.

1. Problem formulation and general assumptions

The flow is sketched in Figure 1. Initially, the liquid is at rest and occupies a region (−h′ < y′ < 0),
and the elastic cylinder touches the free surface (y′ = 0) at a single point, which is chosen as the origin
of the Cartesian coordinate system x′Oy′ (dimensional variables are denoted by a prime). At the initial
instant of time (t′ = 0), the cylinder of radius R′ begins to penetrate the liquid with initial vertical
velocity V . The shape and velocity of the cylinder vary due to the interaction between the elastic
cylinder and the liquid. The contact points between the free surface and the elastic body is the main
feature of the problem. The positions of these points are not known and must be determined together
with the liquid flow and the shell deformation.

Figure 1. Figure 2.

The deformations of the elastic cylinder, the distribution of bending stresses, and the positions of the
contact points are determined under the following assumptions: (i) the liquid is ideal and incompressible;
(ii) the flow of the liquid layer is 2D and symmetrical with respect to the y ′-axis; (iii) the liquid flow
in the region beneath the entering body is represented using the shallow water model; (iv) the shell
thickness is constant and small; (v) external mass forces and surface tension are negligible; (vi) the
wetted area of the cylinder is a monotonically increasing function of time.

The problem is formulated in terms of nondimensional variables, with L = h′ and T = h′/V as
length and time scales, V as velocity scale for the liquid flow, and ρV 2 as the hydrodynamic pressure
scale (ρ is the liquid density).

The flow is analyzed using the method of matched asymptotic expansions [1]. Specifically, the flow
field is divided into the four regions depicted in Figure 2: I – the region beneath the entering body; II
– the jet root; III – the spray jet; IV – the outer region.

The velocity of the fluid particles in the jet region III is tangential to the body surface. The flow
inside this region is analyzed in [3], where the jet motion is shown to have negligible influence on the
flow in the jet root. Here, the flows in regions I and II are analyzed, and matched to each other and to
the state of rest in region IV.



2. Elastic shell vibrations

[2] shows that the elastic-shell problem is defined as

ẅ + α (w − vθ) + β (vθθθ + wθθθθ) = γp0(θ, t) (−π < θ < π), (1)

v̈ + α (wθ − vθθ) − β (vθθ + wθθθ) = 0 (−π < θ < π), (2)

v(θ, 0) = w(θ, 0) = 0 (−π < θ < π), (3)

vt(θ, 0) = −sin θ, wt(θ, 0) = −cos θ (−π < θ < π), (4)

α =
E

ρ0R2V 2(1 − ν2)
, β =

Eh2

12ρ0R4V 2(1 − ν2)
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ρ

ρ0h
, R =

R′

h′
, h =

h0

h′
.

Here, w and v are the radial and angular components of the absolute displacements of the shell elements,
respectively. r, θ are polar coordinates, θ = 0 corresponds to the lowest point of the body. h0 is the
thickness of the shell, ρ0 is the density of the shell material, E is the elasticity modulus, ν is Poisson’s
ratio, p(x, y, t) is the hydrodynamic pressure, p0(θ, t) is the external (hydrodynamic) load acting on the
elastic shell. Within the contact region, |x| < c(t) and |θ| < θc(t), one has p0(θ, t) = p(x(θ, t), y(θ, t), t),
where x(θ, t) and y(θ, t) are the horizontal and vertical coordinates of the entering elastic cylinder with
x(±θc(t), t) = ±c(t). During the initial stage of the impact, i.e. for θc � 1, one may use the approximate
formulae x ≈ Rθ, θc(t) ≈ c(t)/R. A dot stands for derivative with respect to time. The initial conditions
(3) and (4) imply that the shell is undeformed before the impact and moves vertically.

Equations (1)-(4) correspond to the structural part of the problem. The coupled structural and
hydrodynamic problem requires that the size of the contact region and the hydrodynamic pressure dis-
tribution along the wetted region be determined simultaneously.

3. Liquid flow beneath the entering shell

Estimates of the liquid flow parameters and physical reasoning indicate that within region I, the
pressure p and the horizontal component u of the velocity are approximately y-independent. The
dimensionless equations of the liquid motion are:

ut + uux = px, (5)

ux + vy = 0 (|x| < c(t), −1 < y < f(x, t) − t), (6)

v = fx(x, t)u − ft(x, t) − 1 (y = f(x, t) − t, |x| < c(t)), (7)

v = 0 (y = −1, |x| < c(t)). (8)

Here u = u(x, t), p = p(x, t), v = v(x, y, t). Integration yields

u(x, t) =
x −

∫ x

0 ft(ξ, t)dξ

f(x, t) + 1 − t
, (9)

for the symmetrical case.
The pressure distribution over the contact line can be determined by integrating (1) and using (5)

and the boundary condition p(c(t), t) = pc(t), with pc not known in advance. Integration yields

p(x, t) = pc(t) +
1

2
[u2(c, t) − u2(x, t)] +

c
∫

x

ut(ξ, t)dξ. (10)

It will be noted that the functions f(x, t) and c(t), which define the shape of the body and the size of
the contact region, are unknown in equations (9-10).



4. Liquid flow in region II and matching conditions

Following [1], the flow in region II is assumed to be approximately quasi-stationary. Thus, the
entering body velocity is neglected and the body surface is taken as a horizontal plate; see Figure 3.

Figure 3.

Within this approach, the jet of thickness 1 moves left with velocity dc/dt. A part of the jet mass
continues to move left between the two rigid horizontal plates, Hc = f(c, t) − t + 1. At left-hand-side
infinity, the pressure is pc(t) and the horizontal velocity is u0 = dc/dt − u(c, t). Another part of the jet
is deflected and forms a spray jet of thickness hj . The dynamic condition at the free surface requires
that the magnitude of the flow velocity at the free surface be constant. The jet horizontal velocity at
infinity is then dc/dt [4]. Here, matching of the flow parameters in region I and II was used. A detailed
analysis of the flow can be obtained using conservation laws:
mass-conservation law

c′ = hjc
′ + Hcu0, (11)

Bernoulli’s equation (equivalent to energy-conservation law)

(c′)2 = 2pc + u2
0, (12)

momentum-conservation law
(pc + u2

0)Hc = (c′)2(1 + hj). (13)

The three equations (11)-(13) determine the three unknown functions hj , ct, pc(t), as follows hj =
(
√

Hc − 1)2,

c′ =
c −

∫ c

0 ft(ξ, t)dξ

2(Hc −
√

Hc)
, (14)

pc(t) = −(c(t) −
∫ c

0 ft(ξ, t)dξ)2

2H2
c (
√

Hc − 1)
. (15)

Equations (14)-(15) define the flow in region I, the size of the contact region, and the pressure distribu-
tion along the contact line by virtue of (9)-(10).

5. Normal modes method

The coupled hydroelasticity problem is solved here using the normal mode method. Within this
approach, the solution of the boundary-value problem (1)-(4) is sought in the form

p(Rθ, 0, t) =
∞

∑

n=0

pn(t) cos nθ, w(θ, t) =
∞

∑

n=0

an(t) cos nθ, v(θ, t) =
∞

∑

n=1

bn(t) sin nθ, (16)

where −π < θ < π, and the principal coordinates an(t) and bn(t) define the elastic deformation of the
shell. Within the parabolic approximation, the shape of the shell is given by

f(x, t) =
x2

2R
+

∞
∑

n=0

an(t) cos
nx

R
. (17)

Formulae (9) gives in this case

u(x, t) =
x − ȧ0x −

∑

∞

n=1
an(t)R

n
sin nx

R

x2

2R
+

∑

∞

n=0 an(t) cos nx
R

+ 1 − t
=

U(x, ~̇a(t))

H(x, t,~a(t))
. (18)



pn(t) can be determined by multiply the first expansion in (16) by cos(nx/R) and integrating it with
respect to x with −c ≤ x ≤ c. After integration, pn(t) is obtained in the form

pm(t) = Km(t, c(t),~a(t), ~̇a(t)) −
∞

∑

n=0

Snm(t, c(t),~a(t))än(t), (19)

where
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(U(c(t), ~̇a(t)))2
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1
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−
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c

∫
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, (20)

Kn(t, c(t),~a(t), ~̇a(t)) = πR

c
∫

−c

K(t, c(t), x,~a(t), ~̇a(t)) cos
nx

R
dx, (21)

S0m(t, c(t),~a(t)) = 2πR

c
∫

0

ξ2 cos mξ
R

H(ξ, t,~a(t))
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πR2

n
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ξ sin nξ
R

cos mξ
R

H(ξ, t,~a(t))
dξ, (22)

The system (1)-(2) can be expanded to obtain expressions for the principal coordinates an(t) and
bn(t).

än + an(α + βn4) − bn(αn + βn3) − γpn = 0, (23)

b̈n − an(αn + βn3) + bn(βn2 + αn2) = 0 (24)

ä0 + αa0 − γp0 = 0.n = 0 (25)

(19) can be used and combined with second time derivatives än(t). Following [2] and [5], an infinite
system of ordinary differential equations is obtained for the principal coordinates ~a = (a0, a1, a2, ...)

T ,
~b = (b0, b1, b2, ...)

T and auxiliary vector-functions ~q = (q0, q1, q2, . . .)
T , ~r = (r0, r1, r2, . . .)

T ,

q̇n = (I − γS)−1(γKn(t, c(t), x,~a(t), ~̇a(t)) − D1an − D2bn)

ṙn = −(D3an + D4bn) (26)

ȧn = qn

ḃn = rn

D1 = diag(α + βn4), D2 = diag(αn + βn3), D3 = diag(α + βn3), D4 = diag(αn2 + βn2).

System (26) was solved numerically under zero initial conditions at time t = 0 by Runge-Kutta method.
Integrals (20)-(22) was calculated numerically.

As in previous studies, it is convenient to replace the independent variable t by c. However, the
connection c(t) does not follow here from the Wagner condition, but from equation (14).

Results and discussion of this calculation will be presented at the workshop.
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