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1. Introduction

Hydrodynamic studies of a body floating in two-layer fluids of finite depth have been made for the first-order
radiation and diffraction problems (e.g. Ten & Kashiwagi (2004) and Kashiwagi et al. (2005)). However, to the
author’s knowledge, no study has been made so far on the second-order wave drift force in two-layer fluids.

The analyses for a two-layer fluid are rather complicated even for first-order problems. For example, in the
diffraction problem, two different incident waves of surface-wave mode (with longer wavelength) and internal-
wave mode (with shorter wavelength) must be considered for a prescribed frequency, and each incident wave will
be scattered by a body into two different wave modes. Thus the energy of the incident wave may be transferred
from one mode to another. Furthermore, when the body is oscillating in response to the incident wave, the
body motion may change the reflected and transmitted waves. For this complicated wave field in a two-layer
fluid, it is crucial to derive analytically the correct form of calculation formula for the wave drift force and to
understand what are distinctive differences from the single-layer case.

2. Formulation

A 2-D floating body of general shape is con-
sidered, which intersects the interface between
the upper and lower layers as a general case
and oscillates sinusoidally in response to an in-
cident wave with circular frequency ω. Analy-
ses are performed with the coordinate system
and notations shown in Fig. 1. The free sur-
face, the interface, and the flat rigid bottom
of water are located at z = 0, z = h1, and
z = h (= h1 + h2), respectively.

Assuming a linear potential flow for both
upper and lower fluids, the velocity potential
is introduced and written in the form
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Fig. 1 Coordinate system and notations
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where φ
(m)
Dp (x, z) = φ

(m)
Ip (x, z) + φ

(m)
Sp (x, z), (3)

and superscript (m) denotes the fluid layer, with m = 1 and 2 corresponding to the upper and lower fluid layers,
respectively. φ

(m)
Dp denotes the diffraction potential which is the sum of the incident-wave potential φ

(m)
Ip and the

scattering potential φ
(m)
Sp . In two-layer fluids, there can be two different wave modes for a prescribed frequency;

those modes are differentiated with subscript (p), and specifically p = 1 is referred to as the surface-wave mode
and p = 2 as the internal-wave mode. φ

(m)
Rj denotes the radiation potential with unit velocity in the j-th

direction (j = 1 for sway, j = 2 for heave, and j = 3 for roll), and the complex amplitude of the j-th mode of
motion, Xj/Ap, must be determined by solving the motion equations of a body in waves.

The velocity potentials are governed by the Laplace equation and satisfy the linearized boundary conditions
including the continuity condition of the vertical velocity and the pressure on the interface, which are well
defined in related literatures (e.g. Ten & Kashiwagi (2004)).



The velocity potential of the incident wave (incoming from the positive x-axis) can be determined irrespective
of the presence of a body, and the resultant expression for φ

(m)
Ip is written as

φ
(m)
Ip (x, z) = Z(m)(kp; z) eikpx , (4)

where
Z(1)(k; z) =

k chkz − K shkz

k
, Z(2)(k; z) =

K chkh1 − k shkh1

k shkh2
chk(z − h). (5)

Variable k in (4) and (5) is the wavenumber satisfying the dispersion relation for a two-layer fluid:

D(k) = K(k shkh − K chkh) + (1 − γ)(K2 − k2) shkh1 shkh2 = 0 . (6)

For brevity, the hyperbolic functions of cosh(x) and sinh(x) have been written as ch(x) and sh(x), respectively,
K = ω2/g with g being the gravitational acceleration, and γ = ρ1/ρ2 ≤ 1 with ρm being the density of the
upper (m = 1) and lower (m = 2) fluids.

3. Velocity Potentials at the Far Field

The diffraction and radiation potentials on the body surface are determined directly by the integral-equation
method in terms of the Green function satisfying all homogeneous boundary conditions. More details for the
derivation of the integral equation may be found in Ten & Kashiwagi (2004) and Kashiwagi et al. (2005).

Once the velocity potentials on the body surface are determined, it is straightforward to compute hydrody-
namic forces and then to solve the motion equations of a body in each of the incident waves of surface-wave
mode (p = 1) and internal-wave mode (p = 2).

The asymptotic expression of velocity potentials at x → ±∞ can be obtained by neglecting evanescent wave
terms in the Green function and substituting its result in the expression of the velocity potential derived with
Green’s theorem. Considering only the incident wave of kp-wave mode, the resultant asymptotic expression for
the velocity potential ϕ

(m)
p defined in (2) can be expressed as follows:
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with δpq being Kronecker’s delta.
Rpq and Tpq are the coefficients of reflected and transmitted waves, respectively, with wavenumber kq when

the incident wave is of the kp-wave mode. As shown in (9) and (10), these can be computed by superposition
of the Kochin functions in the diffraction and radiation problems.

4. Momentum and Energy Conservation Principles

The wave drift force in a two-layer fluid can be analyzed in the same way as that for a single-layer fluid on the
basis of the momentum and energy conservation principles. First let us consider the momentum conservation
in the x-axis in a two-layer fluid, which may be written in the form
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Here the overbar in (11) means time average over one period to be taken, Un represents the normal velocity of
the boundaries surrounding the fluid under consideration, and p

(m)
S in (13) denotes the static pressure.



Considering the case where the incident wave is of the kp-wave mode (p = 1 or 2) and retaining only quadratic
terms in the velocity potential, the wave drift force acting in the negative x-axis may be written as follows:
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where the square brackets with superscript +∞ and subscript −∞ means the difference between the quantities
in the brackets evaluated at x = +∞ and x = −∞.

Equation (14) can be regarded as a reasonable extension from the single-layer result. However, this form is
not convenient for analytical integration, because the derivatives with respect to z are included and thus the
orthogonality properties of the eigenfunctions for a two-layer fluid can not directly be used. To surmount this
inconvenience, further transformation is considered for the integrals containing the derivatives with respect to z
by means of partial integrations and then the Laplace equation and the boundary conditions at z = 0, z = h1,
and z = h. The result can be of the following form:
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where the asterisk means the complex conjugate.
Substituting this result in (14), it can be seen that the last two terms in (14) cancel out by the first two

terms on the right-hand side of (15), and the result can be rewritten in the form
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In a similar manner, starting from a basis equation due to the energy-conservation principle for the two-layer
fluid and taking time average over one period, the result corresponding to (16) can be expressed as
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5. Calculation Formula of Wave Drift Force

In performing the integrals in (16) and (17) with respect to z, the orthogonality properties can be effectively
used; those are written as follows. First let us define
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Then, in the same way as that in the Sturm-Liouville eigenvalue problem, it can be proven that Lpq = 0 for
p =/ q. For the case of p = q, F(kp) ≡ 2kpLpp can be written explicitly in the form
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With these results, the integrals in (16) after substituting (7) and (8) for ϕ
(m)
p can be performed analytically

with relative ease, and the result can be expressed as
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In the same way, the result for the case of W ′
p = 0 to be obtained from (17) can be expressed as(
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In these expressions, convention of p =/ q is adopted; that is, when p = 1 (the incident wave is of surface-wave
mode) q = 2, and when p = 2 (the incident wave is of internal-wave mode) q = 1.

Combining (20) and (21), the final form of the formula for the wave drift force in two-layer fluids takes the
following form:
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It should be noted here that there is a possibility of negative value of the wave drift force in a two-layer fluid
for the case of p = 1. Because k2 > k1, the value of (22) can be negative if the value of

∣∣T12

∣∣ (the transmitted
wave with wavenumber k2 in the incident wave of surface-wave mode) is relatively large. On the other hand,
for the case of p = 2, the value of (22) is definitely positive.

6. Numerical Results

Numerical computations were implemented for a Lewis-form body with the half-breadth to draft ratio H0 =
b/d = 0.833 and the sectional area ratio σ = A/Bd = 0.9 (in real dimensions, the breadth B = 0.2 m and the
draft d = 0.12m). Owing to paucity of space, just one example among various results is shown in Fig. 2 for
h = 0.40m and γ = 0.75, in which only the heave motion is free to oscillate in response to the incident wave
of surface-wave mode (left figure) and internal-wave mode (right figure). To see the effects of the interface, the
vertical position of the interface was changed from h1 = 0.06m to 0.20m.

We can see that the drift force at h1 = 0.13m in the incident wave of surface-wave mode fluctuates in lower
frequencies and becomes negative in a certain range of frequency, which is due to the effect of transmitted wave
with internal-wave mode, as can be conjectured from (22).

In the incident wave of internal-wave mode, a remarkable change can be seen depending on whether a body
intersects the interface. When the interface is deeper than the draft of a body, the drift force is negligibly small.
However, once a body intersects the interface, the drift force becomes large and increases almost linearly with
respect to Kb; for which we may envisage that the internal incident wave will be blocked by a body and almost
all waves may be reflected. Namely the coefficient of R22 in the calculation formula (22) is largely different
depending on whether the body intersects the interface.
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Fig. 2 Wave drift force on a Lewis-form body (H0 = 0.833, σ = 0.9) in two-layer fluids. Effect of the

interface position for the case where only the heave motion is free to oscillate.
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‘Wave drift force on a floating body in two-layer fluids’

Discusser - C. C. Mei:

For 1-layered fluid, the method of radiation stress gives a convenient and physical way of delivering

the drift force in terms of the reflection coefficient in the far field. Have you tried it?

Reply:

No, I have not. I suppose the method of radiation stress may give the same result for the drift force

in two-layer fluids. One of the points in the present paper is to show a mathematical transformation

which enables it easier to apply the orthogonality relations to the equations based on the momentum

and energy conservation principles.

Discusser - T. Miloh:

The range of density ratios which you used 0 ≤ γ < 1 is a bit unrealistic. For real sea conditions
γ ∼ 0.99 and the interface (baroclinic mode) is the dominant mode.
I wonder if there are any limitations for applying your approach to a wave maker piercing the interface

in the baroclinic approximation. In this case finding the intersection point between the interface and

the body is not a trivial task and can not be presumed apriori.

Your discrete set of eigenfunctions can be applied only for the case of two-layers of finite depth. If the

lower layer is infinitely deep a continuous (integral) set of eigenvalues should be used instead.

Reply:

Your saying is true in a real sea. In our laboratory experiment, the water and iso-paraffin oil were used,

which gave the density ratio γ ' 0.75. A situation of two-layer fluid with large difference in the fluid
density might be realized in a shallow channel with a large amount of muddy water on the bottom.

Numerical computations in the present paper are based on the linear theory and the integral equation

method using the Green function. Therefore the intersection point can be clearly defined, and there is

no numerical difficulty if the field and source points are not exactly at the intersection point. Numerical

solution of the integral equation is obtained with the constant-panel and collocation method.

In the far-field method, it suffices to consider the progressive wave terms and thus the number of

wavenumbers (eigenvalues) to be considered is only two. For the case of infinitely deep lower layer, the

expression of the wavenumbers and eigenfunctions becomes simpler and analytical integrations with

respect to z may be performed with relative ease without explicitly using the orthogonality relations.


