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1. Introduction 
In recent decades, there is growing interest in analyzing the dynamic response of floating elastic 
structures with ocean waves which plays a significant role in marine technology and in cold region 
engineering.  These types of problems lead to a special class of boundary value problems associated 
with Laplace equation having higher order boundary conditions.  Recently, Manam et al. (2006) 
developed expansion formulae for such type of wave structure interaction problems based on the direct 
application of Fourier analysis and Green’s integral theorem  In the present paper, the expansion formula 
in quarter plane for a more general type of boundary value problem as in Manam et al. (2006) is 
obtained. The detail derivation of the expansion formula is demonstrated by a different method in a 
particular case by analyzing the boundary value problem associated with the scattering of surface water 
waves by a discontinuity in a floating elastic plate. 

2. General boundary value problem and its expansion formula 
In the present paper, we consider the boundary value problem associated with a Laplace equation in 
two-dimensional Cartesian co-ordinate system, which arises in the broad area of fluid structure 
interaction with the fluid assumed to be inviscid and incompressible and the flow is assumed to be 
irrotational and simple harmonic in time with angular frequencyω .  Thus, there exists a velocity 
potential ( , , )x y tΦ  of the form  which satisfies the Laplace equation in the 
space variables.  The fluid is assumed to occupy region 0 ,

( , , ) Re[ ( , ) ]i tx y t x y e ωφ −Φ =
0x y< < ∞ < < ∞ .  On the structural boundary, 

the velocity potential ( , )x yφ  satisfies the boundary condition of the form  
                     ( ) ( ) 0x y xL Mφ φ∂ + ∂ =  on 0,0y x= < < ∞       (1)  
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with ’s and ’s are the known constants.   Further, the far field radiation condition is of the form nc nd
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Finally, the bottom boundary condition is given by  
                                                               ,  0, as .yφ φ∇ → →∞  (4) 
The expansion formula for the velocity potential ( ),x yφ satisfying the conditions (1), (2) and (4) with 

is derived by Manam et al. (2006) by applying the Fourier sine transform to the 
vertical boundary in which the unknown coefficients are obtained by the use of a newly defined mode 
coupling relation.  On the other hand, in the present paper, Fourier sine transform is applied on the 
horizontal boundary to convert the BVP to a Sturm-Liouville type BVP associated with non-
homogeneous ordinary differential equation (ODE) in the transformed variable.  The solution of the 
ODE in the transformed variable is obtained by the Green’s function technique.  Finally, inverting the 
transformed functions and applying the regularity criterion of the transformed functions, the required 
expansion formula is derived.  The same approach is being extended to derive the expansion formula in 
a semi-infinite strip and details are deferred here.  Here, without going to the detail derivation, we 
mentioned the general form of the expansion formula in terms of a Theorem. 
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Theorem: The velocity potential ( , )x yφ  satisfying the governing equation along with the boundary 
conditions (1) and (2) in case of infinite depth is given by 
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where,  are the complex roots of the dispersion relation.  The detail proof of the theorem 
is deferred here and will be presented in the workshop.  

0,   ,.., 2nk n I n=

3. Scattering of surface water waves by a discontinuity in a floating elastic plate 
In the present paper, the scattering of surface water waves by a discontinuity at origin in an infinitely 
extended floating elastic plate is analyzed by considering the Timoshenko-Mindlin equation as the plate 
equation instead of the Euler-Bernoulli beam equation to include the plate thickness.  It may be noted 
that this point of discontinuity is referred to as a crack in case of a floating ice sheet (as in Evans and 
Porter (2003)).  Without going into the detail derivation, we will use the convention as used in the paper 
of Balmforth and Craster (1999) which yields the plate covered free surface condition as in (1) in two-
dimensions with and is given by                                    0 2 and 1n m=

                                     (6) ( ) ( )0 1 2 0 1 0,   on 0,  0,0xx xxxx y xxc c c d d y x xφ φ+ ∂ + ∂ + + ∂ = = −∞ < < < < ∞
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2
1 ,wd Sρ ω= − 2 12I d=  is rotary inertia, { }3 12(1 )B Ed 2ν= − is the plate rigidity, 212S B Gπ= d is                

the shear deformation of the plate, ( )2 1G E ν= +  is the shear modulus of elastic material, E  is the 
Young’s modulus, π is the second effect of damping, pm dρ=  is mass per unit area, pρ is the density of 
the plate, wρ  is the density of water, is the acceleration due to gravity and d is the draft of the elastic 
plate.  The far field condition is of the form  
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where 0R  and   are the unknown reflection and transmission coefficients to be determined as a part of 
the solution procedure.  Assuming that the plates are having a line discontinuity at the origin with free 
edge behavior, the vanishing of shear force and the bending moment at this end yields    

0T

                                    ( )0 ,0 0,yyyφ ± = ( ) ( )0 ,0 0 ,0xyyy xyNφ φ± = ±  with 1 2N c c=       (8)                 



In addition, across the boundary between the two plate covered region, the continuity of velocity and 
pressure near the point of discontinuity yields  
                              ( ) (, ,x x )x y xφ φ+ = − y and  ( ) ( ), ,x y xφ φ+ = − y  at 0,0 .x y= < < ∞                  (9) 
In order to solve this BVP defined in the half plane, it is reduced to two quarter plane boundary value 
problems in ( , ) and ( , )x y x yϕ ϒ  which are defined as  
                                  ( ) ( ) ( ), , ,x y x y xϕ φ φ= − − y  and ( ) ( ) ( ), , ,x y x y xφ φϒ = + − y .    (10) 

Apart from satisfying conditions of the form (1), (2) and (3), the reduced potentials ( ) ( ),  and ,x y xϕ ϒ y  
satisfy the boundary condition (because of Eq. (9))   
                                           ( ) ( ), 0 and , 0 at 0,    0x x y x y x yϕϒ = = = < < .∞  (11) 

 In order to find the potential function ( ),x yϕ , we put  
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and taking the Fourier sine transform of ( , )x yψ  as given by  ( ) ( )
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boundary value problem in terms of ( , )x yϕ  is converted into a boundary value problem associated with 

an ordinary differential equation in terms of ( )ˆ ,s yψ ξ  whose solution is given by  
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 with .  Taking the inverse Fourier sine transform of ( ) (0 10 ,0 , 0 ,0yα ϕ α ϕ= + = + ) ( )ˆ ,s yψ ξ  and using 

the Cauchy residue theorem of complex function theory, ( ),x yψ  is obtained as   
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Substituting for  and 0A ( ),x yψ from (16) in relation (12), the expansion formulae is obtained as                    
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Now, applying the plate edge conditions as in Evans and Porter (2003), the unknowns 0α and 1α  are 

obtained as 0 1 1J J0α α=  and ( )2 2
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Considering ( ) (, xx y xϕ = ϒ y and proceeding in the similar way as done earlier we obtain 
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Proceeding in a similar manner as in case of 0α and 1α , here 2α and 3α are obtained as 3
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Once the constants  and0A 0B are determined, the reflection and transmission coefficients are evaluated 

from the relation ( )0 0 0 2rK R B A= = +  and ( )0 0 0 2 .tK T B A= = −   Numerical results with realistic 
dimensions as computed using the present approach will be presented at the workshop. 
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‘Expansion formula in wave structure interaction problems - revisited’

Discusser - D.V. Evans:

In your general theory the constants ci, (i = 0, 1, . . .) were assumed to be real. But in the example of
the Mindlin plate c0 appears to be complex.

Reply:

You are right. I have to check the formulation base on the Mindlin equation.

Discusser - M. H. Meylan:

Do you think you could derive a formula for the Green’s function for a Mindlin plate (analogous to the

Green’s function for a thin plate given in Evans & Porter 21IWWWFB p46, eq 6)?

Reply:

Yes a Green’s function can be derived following a similar approach.

Discusser - R. Porter:

The curves you present of the reflection coefficient appear to be self-similar. ie there is a simple scaling

by which all curves will collapse to a single curve. Can a non-dimensional analysis of the governing

equations resolve this?

Reply:

This is an interesting observation. We will look into the problem again.


