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Introduction

We consider the two-dimensional interaction of an incident wave with a flexible floating
dock or very large floating platform (VLFP) with finite draft. The water depth is finite.
The case of a rigid dock is a classical problem. For instance Mei and Black have solved
the rigid problem, by means of a variational approach. They considered a fixed bottom
and fixed free surface obstacle, so they also covered the case of small draft. After splitting
the problem in a symmetric and an antisymmetric one the method consists of matching of
eigenfunction expansions of the velocity potential and its normal derivative at the bound-
aries of two regions. In principle, their method can be extended to the flexible platform
case. Recently we derived a simpler method for both the moving rigid and the flexible
dock. However we considered objects with zero draft only. In this paper we extend our
approach to the case of finite, but small, draft. The draft is small compared to the length
of the platform to be sure that we may use as a model, for the elastic plate, the thin plate
theory, while the water pressure at the plate is applied at finite depth. The method is based
on a direct application of Green’s theorem, combined with an appropriate choice of expan-
sion functions for the potential in the fluid region outside the platform and the deflection
of the plate. The integral equation obtained by the Green’s theorem is transformed in an
integral-differential equation by making use of the equation for the elastic plate deflection.
One must be careful in choosing the appropriate Green’s function. It is crucial to use a
formulation of the Green’s function consisting of an integral expression only. The advan-
tage of this version of the source function is that one may work out the integration with
respect to the space coordinate first and apply the residue lemma afterwards. In the case
of a zero draft platform this approach resulted in the dispersion relation in the plate region
and an algebraic set of equations for the coefficients of the deflection only. Here we derive
a coupled algebraic set of equations for the expansion coefficients of the potential in the
fluid region and the deflection.

Mathematical formulation for the finite draft problem

The fluid is ideal, so we introduce the velocity potential V(x, t) = ∇Φ(x, t), where V(x, t)
is the fluid velocity vector. Hence Φ(x, t)is a solution of the Laplace equation ∆Φ =
0 in the fluid, together with the linearized kinematic condition, Φz = w̃t , and dynamic
condition, p/ρ = −Φt − gw̃, at the mean water surface z = 0, where w̃(x,y, t) denotes
the free surface elevation, and ρ is the density of the water. The linearized free surface
condition outside the platform, z = 0 and (x,y) ∈ F , becomes:

∂2Φ
∂t2 +g

∂Φ
∂z

= 0. (1)

To describe the vertical deflection w̃(x,y, t), we apply the isotropic thin-plate theory and
use the kinematic and dynamic condition to arrive at the following equation for Φ at z =
−d in the platform area (x,y) ∈ P :
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We assume that the velocity potential is a time-harmonic wave function, Φ(x, t) = φ(x) e−iωt .
We introduce the following parameters: K = ω2

g , µ = mω2

ρg , D = D
ρg . In a practical situation

the total length l of the platform is a few thousand meters. The potential of the undisturbed
incident wave is given by:

φinc(x) =
gζ∞
iω

cosh(k0(z+h))

cosh(k0h)
exp{ik0(xcosβ+ ysinβ)} (3)

where ζ∞ is the wave height in the original coordinate system, ω the frequency, while the
wave number k0 is the positive real solution of the dispersion relation,

k0 tanh(k0h) = K, (4)

for finite water depth. We restrict ourselves to the case of normal incidence, β = 0.
In the two-dimensional case, (x,z)-plane, the expression for the total potential be-

comes:
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(5)

We continue with the two-dimensional case. The Green’s function G(x,z;ξ,ζ) for the
two dimensional case can be derived by means of a Fourier transform with respect to the
x-coordinate. It has the form:
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and
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Semi analytic solution

In the formulation we restrict ourselves to the semi-infinite platform case. Results are
also shown for the strip case. We eliminate in relation (5) the function φ(ξ,−d) by using
equation (1) and replace φζ(ξ,−d) by −iωw(ξ). Thus we obtain,
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We assume that the deflection w(x) can be written as an expansion in exponential func-
tions, truncated at N +2 terms of the form,

w(x) = ζ∞

N+1

∑
n=0

an eiκnx. (9)



If we consider κn’s with either real positive values or, if they are complex , with positive
imaginary part, then the first part of expression (9) expresses modes traveling and evanes-
cent to the right. The second part then describes modes traveling and evanescent to the
left.

Furthermore we expand the potential function for x ≤ 0 and x ≥ l in series of orthogo-
nal eigenfunctions, truncated at N terms
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for x ≤ 0 (10)

where the kn’s are the positive real and positive imaginary roots of the dispersion rela-
tion (4). The difference in the number of expansion functions in (9) is due to the fact
that we have two boundary conditions at the edge of the plate. The coefficient α0 is the
reflection coefficients. it should be noticed that the potential under the platform is not
expanded in a set of orthogonal eigenfunctions. By the way, such a set does not exist.
Extension of the solution along the bottom of the platform in the flow region is simply
done by application of (8). We have introduced 2N + 2 unknown coefficients. Next we
derive an algebraic set of equations for these coefficients. The values for κn follows from
a ’dispersion’ relation, yet to be determined.

First we take (x,z) at the bottom of the plate, this leads to the following equation
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We take the limit in the last integral after we have carried out the spatial integrations
analytically. This means that we keep the factor 2π in the left hand side of the equation.
The commonly used factor π and principle value integral may be obtained by taking the
limit first. However, it is more convenient to avoid the principle value integral in our
approach. In the first integral on the right-hand side we insert for the Green function the
series expansion and for the potential function the expansion (10), while in the second
integral we use (7) for the Green function and (9) for the deflection. In the first integral
integration with respect to ζ and in the last integral the integration with respect to ξ can be
carried out. Next we close the remaining contour of integration in the complex γ-plane.

If we now equalize the coefficients of eiκnx, we obtain the following ’dispersion’ rela-
tion for κn, the κn’s are the zero’s of

(Dκ4 −µ−1)κ tanhκ(h−d) = K

At the bottom we compare the remaining exponential terms and at the frontend the hyper-
bolic cosine terms. We obtain for i = 0, · · · ,N −1:
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At the frontend we obtain for i = 0, · · · ,N −1:
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where the coefficients Ki,n are defined as:

2Ki,n =
ki + kn

sinh(ki + kn)h− sinh(ki + kn)(h−d)
+

ki − kn

sinh(ki − kn)h− sinh(ki − kn)(h−d)
.

Together with the two edge conditions we have 2N + 2 equations for the 2N + 2 coeffi-
cients.

Results

We show some results for the half-plane and the strip.
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(a) d = 2 m, λ = 150, 90, 30 m
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(b) d = 0, 2, 4, 6 m, λ = 90 m
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(c) h = 100, 20, 10 m, λ0 = 100 m
Figure 1: D = 107 m4, h = 10 m in (a) and (b), d = 5 m in (c)
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(a) D = 107 m4, λ/l = 0.3
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(b) D = 107 m4, λ/l = 0.5
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(c) D = 1010 m4, λ/l = 0.5
Figure 2: l = 300 m, d = 0,−−, 2,−−, 4, · · · m
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(a) d = 0 m and l = 300 m
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(b) d = 2 m and l = 1000 m
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(c) d = 8 m, and l = 1000 m
Figure 3: Reflection and transmission coefficients for D = 107 m4, h = 100 m


